基于神经网络船舶轨迹跟踪自适应滑模控制无人船(带参考文献)

基于神经网络船舶轨迹跟踪自适应滑模控制无人船(带参考文献)

在这里插入图片描述
在这里插入图片描述
以下文字及示例代码仅供参考

基于神经网络的船舶轨迹跟踪自适应滑模控制

在无人船(Unmanned Surface Vehicle, USV)的控制领域,实现精确的轨迹跟踪是一个关键挑战。本文将介绍一种结合了**神经网络(Neural Network, NN)自适应滑模控制(Adaptive Sliding Mode Control, ASMC)**的方法来解决这个问题,并提供一个简化的Python代码示例。

一、控制策略概述

1. 自适应滑模控制(ASMC)

滑模控制(Sliding Mode Control, SMC)是一种鲁棒控制方法,能够在存在不确定性和外部扰动的情况下保证系统的稳定性。然而,传统的SMC需要精确的系统模型,这在实际应用中往往难以满足。因此,引入自适应机制和神经网络补偿未知部分成为一种有效的解决方案。

2. 神经网络的应用

神经网络可以用来逼近未知的非线性函数或参数不确定性。通过在线学习,神经网络能够实时调整其权重,以最小化跟踪误差,从而提高控制性能。

二、数学模型

考虑以下简化的一阶USV动力学模型:

x ˙ = v cos ⁡ ( θ ) y ˙ = v sin ⁡ ( θ ) θ ˙ = ω \dot{x} = v \cos(\theta) \\ \dot{y} = v \sin(\theta) \\ \dot{\theta} = \omega x˙=vcos(θ)y˙=vsin(θ)θ˙=ω

其中,(x) 和 (y) 分别代表USV的位置坐标,(\theta) 是航向角,(v) 和 (\omega) 分别是线速度和角速度输入。

三、控制器设计

1. 滑模面设计

定义滑模面为:

s = e + λ ∫ 0 t e ( τ ) d τ s = e + \lambda \int_0^t e(\tau)d\tau s=e+λ0te(τ)dτ

这里,(e = x_d - x) 表示位置误差,(x_d) 是期望轨迹,(\lambda > 0) 是设计参数。

2. 控制律设计

结合神经网络估计器,控制律设计如下:

u = u ^ N N + u S M C u = \hat{u}_{NN} + u_{SMC} u=u^NN+uSMC

  • (\hat{u}_{NN}) 是由神经网络产生的补偿项。
  • (u_{SMC}) 是基于滑模控制理论设计的标准控制输入。

3. 神经网络训练

使用BP算法更新神经网络权重:

Δ w = − η ∂ J ∂ w \Delta w = -\eta \frac{\partial J}{\partial w} Δw=ηwJ

其中,(J) 是损失函数,(\eta) 是学习率。

四、Python代码示例

下面是一个简化的Python代码示例,用于演示如何实现上述控制策略。

import numpy as np
import matplotlib.pyplot as plt

class NeuralNetwork:
    def __init__(self, input_size, hidden_size, output_size):
        self.weights_input_hidden = np.random.randn(input_size, hidden_size)
        self.weights_hidden_output = np.random.randn(hidden_size, output_size)
        self.learning_rate = 0.01
    
    def sigmoid(self, z):
        return 1 / (1 + np.exp(-z))
    
    def forward(self, X):
        self.hidden_layer_input = np.dot(X, self.weights_input_hidden)
        self.hidden_layer_output = self.sigmoid(self.hidden_layer_input)
        
        self.output_layer_input = np.dot(self.hidden_layer_output, self.weights_hidden_output)
        self.predicted_output = self.sigmoid(self.output_layer_input)
        
        return self.predicted_output
    
    def backward(self, X, y, output):
        output_error = y - output
        output_delta = output_error * self.sigmoid_derivative(output)
        
        hidden_error = output_delta.dot(self.weights_hidden_output.T)
        hidden_delta = hidden_error * self.sigmoid_derivative(self.hidden_layer_output)
        
        self.weights_hidden_output += self.hidden_layer_output.T.dot(output_delta) * self.learning_rate
        self.weights_input_hidden += X.T.dot(hidden_delta) * self.learning_rate
    
    def sigmoid_derivative(self, s):
        return s * (1 - s)

class Controller:
    def __init__(self):
        self.nn = NeuralNetwork(2, 5, 1)
        self.lambda_ = 0.5
    
    def control(self, x, x_d, dx_d):
        e = x_d - x
        de = dx_d - (x[1] * np.cos(x[2]))
        s = e + self.lambda_ * np.trapz(de)
        
        nn_output = self.nn.forward(np.array([e, de]).reshape(1, -1))
        u_sm = -np.sign(s)
        u = nn_output + u_sm
        
        return u

# 参数设置
dt = 0.1
time_steps = 100
x = np.zeros((time_steps, 3))  # [position_x, position_y, heading]
x_d = np.sin(np.linspace(0, time_steps*dt, time_steps))  # Desired trajectory
dx_d = np.cos(np.linspace(0, time_steps*dt, time_steps))

controller = Controller()

for t in range(time_steps - 1):
    u = controller.control(x[t], x_d[t], dx_d[t])
    x[t + 1, 0] = x[t, 0] + dt * x[t, 1] * np.cos(x[t, 2])
    x[t + 1, 1] = x[t, 1] + dt * x[t, 1] * np.sin(x[t, 2])
    x[t + 1, 2] = x[t, 2] + dt * u

plt.plot(x[:, 0], x[:, 1], label='Actual Path')
plt.plot(x_d, np.zeros_like(x_d), label='Desired Trajectory')
plt.legend()
plt.show()

此代码段实现了基本的控制器逻辑,包括神经网络的前向传播、反向传播以及滑模控制部分。它模拟了一个简单的无人船沿着正弦曲线移动的情况。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值