基于神经网络船舶轨迹跟踪自适应滑模控制无人船(带参考文献)
以下文字及示例代码仅供参考
文章目录
基于神经网络的船舶轨迹跟踪自适应滑模控制
在无人船(Unmanned Surface Vehicle, USV)的控制领域,实现精确的轨迹跟踪是一个关键挑战。本文将介绍一种结合了**神经网络(Neural Network, NN)与自适应滑模控制(Adaptive Sliding Mode Control, ASMC)**的方法来解决这个问题,并提供一个简化的Python代码示例。
一、控制策略概述
1. 自适应滑模控制(ASMC)
滑模控制(Sliding Mode Control, SMC)是一种鲁棒控制方法,能够在存在不确定性和外部扰动的情况下保证系统的稳定性。然而,传统的SMC需要精确的系统模型,这在实际应用中往往难以满足。因此,引入自适应机制和神经网络补偿未知部分成为一种有效的解决方案。
2. 神经网络的应用
神经网络可以用来逼近未知的非线性函数或参数不确定性。通过在线学习,神经网络能够实时调整其权重,以最小化跟踪误差,从而提高控制性能。
二、数学模型
考虑以下简化的一阶USV动力学模型:
x ˙ = v cos ( θ ) y ˙ = v sin ( θ ) θ ˙ = ω \dot{x} = v \cos(\theta) \\ \dot{y} = v \sin(\theta) \\ \dot{\theta} = \omega x˙=vcos(θ)y˙=vsin(θ)θ˙=ω
其中,(x) 和 (y) 分别代表USV的位置坐标,(\theta) 是航向角,(v) 和 (\omega) 分别是线速度和角速度输入。
三、控制器设计
1. 滑模面设计
定义滑模面为:
s = e + λ ∫ 0 t e ( τ ) d τ s = e + \lambda \int_0^t e(\tau)d\tau s=e+λ∫0te(τ)dτ
这里,(e = x_d - x) 表示位置误差,(x_d) 是期望轨迹,(\lambda > 0) 是设计参数。
2. 控制律设计
结合神经网络估计器,控制律设计如下:
u = u ^ N N + u S M C u = \hat{u}_{NN} + u_{SMC} u=u^NN+uSMC
- (\hat{u}_{NN}) 是由神经网络产生的补偿项。
- (u_{SMC}) 是基于滑模控制理论设计的标准控制输入。
3. 神经网络训练
使用BP算法更新神经网络权重:
Δ w = − η ∂ J ∂ w \Delta w = -\eta \frac{\partial J}{\partial w} Δw=−η∂w∂J
其中,(J) 是损失函数,(\eta) 是学习率。
四、Python代码示例
下面是一个简化的Python代码示例,用于演示如何实现上述控制策略。
import numpy as np
import matplotlib.pyplot as plt
class NeuralNetwork:
def __init__(self, input_size, hidden_size, output_size):
self.weights_input_hidden = np.random.randn(input_size, hidden_size)
self.weights_hidden_output = np.random.randn(hidden_size, output_size)
self.learning_rate = 0.01
def sigmoid(self, z):
return 1 / (1 + np.exp(-z))
def forward(self, X):
self.hidden_layer_input = np.dot(X, self.weights_input_hidden)
self.hidden_layer_output = self.sigmoid(self.hidden_layer_input)
self.output_layer_input = np.dot(self.hidden_layer_output, self.weights_hidden_output)
self.predicted_output = self.sigmoid(self.output_layer_input)
return self.predicted_output
def backward(self, X, y, output):
output_error = y - output
output_delta = output_error * self.sigmoid_derivative(output)
hidden_error = output_delta.dot(self.weights_hidden_output.T)
hidden_delta = hidden_error * self.sigmoid_derivative(self.hidden_layer_output)
self.weights_hidden_output += self.hidden_layer_output.T.dot(output_delta) * self.learning_rate
self.weights_input_hidden += X.T.dot(hidden_delta) * self.learning_rate
def sigmoid_derivative(self, s):
return s * (1 - s)
class Controller:
def __init__(self):
self.nn = NeuralNetwork(2, 5, 1)
self.lambda_ = 0.5
def control(self, x, x_d, dx_d):
e = x_d - x
de = dx_d - (x[1] * np.cos(x[2]))
s = e + self.lambda_ * np.trapz(de)
nn_output = self.nn.forward(np.array([e, de]).reshape(1, -1))
u_sm = -np.sign(s)
u = nn_output + u_sm
return u
# 参数设置
dt = 0.1
time_steps = 100
x = np.zeros((time_steps, 3)) # [position_x, position_y, heading]
x_d = np.sin(np.linspace(0, time_steps*dt, time_steps)) # Desired trajectory
dx_d = np.cos(np.linspace(0, time_steps*dt, time_steps))
controller = Controller()
for t in range(time_steps - 1):
u = controller.control(x[t], x_d[t], dx_d[t])
x[t + 1, 0] = x[t, 0] + dt * x[t, 1] * np.cos(x[t, 2])
x[t + 1, 1] = x[t, 1] + dt * x[t, 1] * np.sin(x[t, 2])
x[t + 1, 2] = x[t, 2] + dt * u
plt.plot(x[:, 0], x[:, 1], label='Actual Path')
plt.plot(x_d, np.zeros_like(x_d), label='Desired Trajectory')
plt.legend()
plt.show()
此代码段实现了基本的控制器逻辑,包括神经网络的前向传播、反向传播以及滑模控制部分。它模拟了一个简单的无人船沿着正弦曲线移动的情况。
。