提示工程架构师必备:7个多场景提示系统的可观测性设计技巧

提示工程架构师必看:7个多场景提示系统的可观测性设计技巧——从黑盒到透明的实践指南

关键词

提示工程、可观测性、多场景提示系统、Prompt生命周期追踪、上下文快照、模型推理透视、用户反馈闭环

摘要

当你为客服AI设计动态Prompt时,用户投诉“回答的物流时间不对”,但日志里只显示“调用了物流工具”;当你为代码生成AI优化Prompt时,生成的代码突然无法运行,却找不到是Prompt模板错了还是上下文漏了;当你为数据分析AI扩展多模态输出时,生成的图表和数据不符,却不知道问题出在Prompt还是模型——这些痛点的根源,是提示系统的“黑盒性”

提示系统的核心是“Prompt+模型+上下文”的动态交互,但传统软件的可观测性方法(日志、指标、链路追踪)无法直接适配其“Prompt作为代码、模型作为 runtime、上下文作为状态”的特性。本文将结合多场景实践(客服、代码生成、数据分析),分享7个可落地的可观测性设计技巧,帮你把提示系统从“黑盒”变成“透明玻璃盒”:从Prompt的全生命周期追踪,到上下文的版本控制,再到模型推理的Token级透视,最终实现“观测-分析-优化”的闭环。

无论你是刚入门的提示工程架构师,还是正在优化AI系统的运维人员,这篇文章都会给你一套从0到1的可观测性设计框架——让你不再“猜问题”,而是“用数据定位问题”。

1. 背景:为什么提示系统的可观测性比你想的更重要?

在讨论技巧之前,我们需要先回答一个问题:为什么提示系统需要专门的可观测性设计?

1.1 提示系统的“3大特殊属性”

传统软件的核心是“代码→运行→输出”,而提示系统的核心是“Prompt→模型→上下文→输出”——这三者的动态交互,让提示系统的可观测性变得更复杂:

  1. Prompt的动态性:很多Prompt不是静态模板,而是结合用户输入、工具返回、历史对话生成的。比如客服AI的Prompt可能是:“根据用户订单ID {order_id} 查询最新物流状态,参考用户历史问题‘{user_history}’,用口语化回复”——你看到的“最终Prompt”是多个变量拼接的结果,静态模板无法反映真实执行逻辑。
  2. 模型的黑盒性:大语言模型(LLM)的输出是概率性的,即使Prompt完全相同,模型也可能生成不同结果。比如“写一个稳定排序函数”,模型可能生成 sorted(arr, key=lambda x: (x, id(x))),也可能漏掉id(x)——你无法从输入直接推断输出。
  3. 上下文的累积性:多轮对话中,上下文是逐步累加的。比如用户先问“怎么退款”,再问“我的订单啥时候到”,上下文会包含这两个问题——如果AI回答物流时间时参考了退款问题的上下文,你需要知道“上下文是否被正确传递”。

1.2 传统可观测性的“3大失效场景”

传统软件的可观测性依赖“日志+指标+链路追踪”,但在提示系统中会失效:

  • 日志失效:传统日志记录“输入→输出”,但提示系统的“输入”是动态Prompt+上下文,“输出”是模型生成的文本/代码/图像——离散的日志无法关联“Prompt如何生成”“上下文如何变化”“模型如何推理”。
  • 指标失效:传统指标(如QPS、延迟)只能反映“系统有没有运行”,但无法反映“系统运行得好不好”——比如AI的回答准确率、代码运行成功率、图表相关性,这些是提示系统的核心指标,但传统指标体系无法覆盖。
  • 链路追踪失效:传统链路追踪跟踪“服务间调用”,但提示系统的核心链路是“Prompt生成→模型推理→上下文更新”——这是系统内部的逻辑链路,而非服务间调用,传统链路追踪工具(如Zipkin)无法覆盖。

1.3 目标读者与核心挑战

目标读者:提示工程架构师、AI系统开发者、AI运维人员。
核心挑战

  • 如何追踪动态Prompt的全生命周期?
  • 如何管理多轮对话的上下文变化?
  • 如何透视模型推理的黑盒?
  • 如何量化提示系统的“效果”而非“运行状态”?
  • 如何在多场景(客服、代码生成、数据分析)下适配观测策略?

2. 核心概念:提示系统的可观测性到底是什么?

在讲技巧之前,我们需要先明确提示系统可观测性的定义——它不是“收集更多数据”,而是“收集能回答以下4个问题的数据”:

  1. What:Prompt是怎么生成的?(模板、参数、上下文追加)
  2. Why:模型为什么生成这个输出?(Token概率、注意力权重)
  3. How:上下文是怎么变化的?(每轮对话的快照)
  4. So What:这个输出的效果怎么样?(用户满意度、代码运行率、图表相关性)

2.1 用“餐厅类比”理解核心概念

我们可以把提示系统比作一家智能餐厅,用餐厅的运营逻辑理解可观测性:

提示系统组件餐厅类比可观测性需求
Prompt模板菜单菜单有没有写错?(模板是否正确)
动态Prompt顾客定制菜单顾客的特殊要求有没有被加入?(参数填充、上下文追加)
模型厨师厨师有没有按菜单做菜?(模型是否遵循Prompt)
上下文顾客历史订单顾客之前的偏好有没有被参考?(上下文是否正确传递)
输出菜品菜品是否符合顾客要求?(输出效果)
用户反馈顾客评价顾客对菜品满不满意?(反馈闭环)

提示系统的可观测性,就是餐厅的“智能监控系统”——它能告诉你:

  • 菜单(Prompt模板)有没有写错;
  • 顾客的特殊要求(动态Prompt)有没有被加入;
  • 厨师(模型)有没有按菜单做菜;
  • 顾客之前的偏好(上下文)有没有被参考;
  • 菜品(输出)有没有符合要求;
  • 顾客(用户)对菜品满不满意。

2.2 提示系统可观测性的“4层架构”

基于上述类比,我们可以将提示系统的可观测性拆解为4层,从“基础追踪”到“效果闭环”逐步深入:

graph TD
    A[基础层:Prompt全生命周期追踪] --> B[状态层:上下文动态快照]
    B --> C[推理层:模型黑盒透视]
    C --> D[效果层:用户反馈闭环]
  1. 基础层:追踪Prompt从“模板→参数填充→动态修改→模型输入”的全流程;
  2. 状态层:记录上下文的每一次变化,像Git一样管理对话状态;
  3. 推理层:透视模型的Token生成过程,理解“模型为什么这么输出”;
  4. 效果层:将用户反馈与观测数据关联,实现“观测-优化”的闭环。

3. 7个可观测性设计技巧:从理论到实践

接下来,我们将逐个讲解7个技巧——每个技巧都包含问题背景、设计思路、实现代码、多场景适配,帮你快速落地。

技巧1:构建Prompt全生命周期追踪——从静态模板到动态执行的链路画像

问题背景

你为客服AI设计了一个Prompt模板:“根据用户订单ID {order_id} 查询物流状态”。但实际运行中,用户的订单ID是动态填充的,而且会追加“用户之前问过退款政策”的上下文——当AI回答错误时,你不知道是模板错了、参数填错了,还是上下文追加错了。

痛点:静态模板与动态Prompt的差异,导致“问题定位无迹可寻”。

设计思路

给每个Prompt实例分配唯一ID,追踪从“模板定义→参数填充→动态修改→模型输入”的全流程——就像给每个快递包裹贴一个“快递单号”,你可以通过单号查看包裹的“出发→中转→签收”全链路。

实现方法:用OpenTelemetry做链路追踪

OpenTelemetry(OTel)是开源的链路追踪标准,支持跨语言、跨系统的链路追踪。我们可以用OTel给每个Prompt实例打标,记录以下信息:

  • 模板ID(区分不同的Prompt模板);
  • 填充的参数(比如order_id=123456);
  • 上下文追加内容(比如“用户之前问过退款政策”);
  • 最终的Prompt内容(模型实际输入的文本)。
代码示例:Python+OpenTelemetry
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
import uuid

# 初始化OTel Tracer
trace.set_tracer_provider(TracerProvider())
tracer = trace.get_tracer("prompt-lifecycle-tracing")
otlp_exporter = OTLPSpanExporter(endpoint="http://localhost:4318/v1/traces")
span_processor = BatchSpanProcessor(otlp_exporter)
trace.get_tracer_provider().add_span_processor(span_processor)

def generate_dynamic_prompt(template: dict, params: dict, context_updates: list) -> tuple[str, str]:
    """生成动态Prompt并记录全生命周期"""
    # 生成唯一Prompt实例ID
    prompt_instance_id = str(uuid.uuid4())
    
    with tracer.start_as_current_span("prompt-lifecycle") as span:
        # 记录基础信息
        span.set_attribute("prompt.instance_id", prompt_instance_id)
        span.set_attribute("prompt.template_id", template["id"])
        span.set_attribute("prompt.template_content", template["content"])
        
        # 1. 参数填充:生成初始Prompt
        filled_prompt = template["content"].format(**params)
        span.add_event("prompt.filled", attributes={"content": filled_prompt})
        
        # 2. 上下文追加:修改Prompt
        for update in context_updates:
            filled_prompt += f"\n{update['type']}: {update['content']}"
            span.add_event("prompt.context_updated", attributes={
                "update_type": update["type"],
                "update_content": update["content"]
            })
        
        # 3. 最终Prompt:模型输入
        span.set_attribute("prompt.final_content", filled_prompt)
    
    return prompt_instance_id, filled_prompt

# 示例使用
template = {
    "id": "customer_service_logistics_001",
    "content": "根据用户订单ID {order_id} 查询物流状态,用口语化回复。"
}
params = {"order_id": "123456"}
context_updates = [
    {"type": "user_history", "content": "用户10分钟前问过退款政策"},
    {"type": "tool_response", "content": "物流系统返回:已发货,预计明日18点前到达"}
]

prompt_id, final_prompt = generate_dynamic_prompt(template, params, context_updates)
print(f"Prompt实例ID:{prompt_id}")
print(f"最终Prompt:{final_prompt}")
多场景适配
  • 客服场景:追踪“订单ID填充+历史对话追加”的流程;
  • 代码生成场景:追踪“用户需求填充+示例代码追加”的流程;
  • 数据分析场景:追踪“数据字段填充+之前的分析结论追加”的流程。

技巧2:上下文动态快照——像Git一样管理对话状态

问题背景

多轮对话中,上下文是逐步累加的。比如:

  1. 用户:“我的订单啥时候到?”
  2. 系统:“请提供订单ID。”
  3. 用户:“123456。”
  4. 系统:“已发货,预计明日到达。”

当系统回答错误时,你需要知道“第三步的订单ID有没有被正确加入上下文”——但传统日志只会记录“最终上下文”,无法查看每一步的变化。

痛点:上下文的“增量变化”无法追踪,导致“问题定位断档”。

设计思路

给每个对话轮次的上下文做“快照”——就像Git的commit,每一步变化都有记录,你可以回滚到任意版本查看上下文状态。

每个快照需要包含以下信息:

  • 快照ID(唯一标识);
  • 对话ID(关联到具体用户的对话);
  • 轮次号(第1轮、第2轮…);
  • 上下文内容(当前轮次的上下文);
  • 内容类型(用户输入/系统输出/工具返回);
  • 时间戳(记录变化时间)。
实现方法:用Redis存储快照序列

Redis的List结构适合存储“有序的快照序列”——每个对话ID对应一个List,List中的每个元素是该轮次的快照。

代码示例:Python+Redis
import redis
import uuid
from datetime import datetime
from typing import List, Dict

# 初始化Redis连接
r = redis.Redis(host="localhost", port=6379, db=0, decode_responses=True)

def save_context_snapshot(
    conversation_id: str,
    turn_number: int,
    content: str,
    content_type: str  # user_input/system_output/tool_response
) -> str:
    """保存上下文快照"""
    snapshot_id = str(uuid.uuid4())
    snapshot = {
        "snapshot_id": snapshot_id,
        "conversation_id": conversation_id,
        "turn_number": turn_number,
        "content": content,
        "content_type": content_type,
        "timestamp": datetime.utcnow().isoformat()
    }
    # 将快照存入Redis:key=conversation:{conversation_id}:snapshots,值为快照JSON字符串
    r.rpush(f"conversation:{conversation_id}:snapshots", str(snapshot))
    return snapshot_id

def get_context_snapshots(conversation_id: str) -> List[Dict]:
    """获取对话的所有上下文快照"""
    snapshots = r.lrange(f"conversation:{conversation_id}:snapshots", 0, -1)
    # 将字符串转换为字典
    return [eval(snap) for snap in snapshots]

# 示例使用
conversation_id = "user_001_convo_001"

# 第1轮:用户输入
save_context_snapshot(
    conversation_id=conversation_id,
    turn_number=1,
    content="我的订单啥时候到?",
    content_type="user_input"
)

# 第2轮:系统输出
save_context_snapshot(
    conversation_id=conversation_id,
    turn_number=2,
    content="请提供你的订单ID。",
    content_type="system_output"
)

# 第3轮:用户输入
save_context_snapshot(
    conversation_id=conversation_id,
    turn_number=3,
    content="订单ID是123456。",
    content_type="user_input"
)

# 第4轮:系统输出
save_context_snapshot(
    conversation_id=conversation_id,
    turn_number=4,
    content="你的订单已发货,预计明日18点前到达。",
    content_type="system_output"
)

# 获取所有快照
snapshots = get_context_snapshots(conversation_id)
for snap in snapshots:
    print(f"轮次 {snap['turn_number']} | 类型 {snap['content_type']} | 内容:{snap['content']}")
多场景适配
  • 客服场景:追踪“用户输入→系统追问→用户回复→系统回答”的上下文变化;
  • 代码生成场景:追踪“用户需求→系统请求示例→用户提供示例→系统生成代码”的上下文变化;
  • 数据分析场景:追踪“用户问题→系统请求数据字段→用户提供字段→系统生成分析”的上下文变化。

技巧3:模型推理黑盒透视——关联Prompt输入与Token级输出解析

问题背景

你为代码生成AI设计了Prompt:“写一个Python的稳定排序函数”,但模型生成的代码是:

def stable_sort(arr):
    return sorted(arr)  # 缺少id(x),不是稳定排序

你不知道是模型“没理解Prompt”,还是“生成时犯了错误”——因为模型的推理过程是黑盒。

痛点:模型输出的“决策逻辑”无法查看,导致“问题归因模糊”。

设计思路

记录模型的输入Prompt输出文本,以及Token级生成过程(比如每个Token的概率、候选词、注意力权重)——就像打开汽车的引擎盖,看发动机的每个零件怎么工作。

实现方法:用LLM API的logprobs参数

大部分LLM API(如OpenAI、Anthropic)都支持返回logprobs(对数概率)——它能告诉你模型生成每个Token时,考虑了哪些候选词,以及每个候选词的概率。

代码示例:OpenAI API+logprobs
from openai import OpenAI
import matplotlib.pyplot as plt
import numpy as np

# 初始化OpenAI客户端
client = OpenAI()

def get_model_inference_details(prompt: str, max_tokens: int = 100) -> dict:
    """获取模型推理的Token级细节"""
    response = client.completions.create(
        model="gpt-3.5-turbo-instruct",
        prompt=prompt,
        max_tokens=max_tokens,
        logprobs=5,  # 返回每个Token的前5个候选词
        temperature=0.1  # 降低随机性,方便测试
    )
    return {
        "prompt": prompt,
        "output": response.choices[0].text.strip(),
        "tokens": response.choices[0].logprobs.tokens,
        "token_logprobs": response.choices[0].logprobs.token_logprobs,
        "top_logprobs": response.choices[0].logprobs.top_logprobs
    }

def visualize_token_probabilities(tokens: list, token_logprobs: list):
    """可视化Token的生成概率"""
    # 将logprob转换为概率(logprob是自然对数,exp后得到概率)
    probabilities = np.exp(token_logprobs)[:10]  # 取前10个Token
    tokens = tokens[:10]
    
    plt.figure(figsize=(12, 6))
    bars = plt.bar(tokens, probabilities, color="#1f77b4")
    plt.xlabel("Token", fontsize=12)
    plt.ylabel("Probability", fontsize=12)
    plt.title("Model Token Generation Probabilities", fontsize=14)
    plt.xticks(rotation=45)
    
    # 在柱子上标注概率值
    for bar in bars:
        height = bar.get_height()
        plt.text(bar.get_x() + bar.get_width()/2, height,
                 f"{height:.4f}", ha="center", va="bottom")
    
    plt.tight_layout()
    plt.show()

# 示例使用
prompt = "写一个Python的稳定排序函数。"
inference_details = get_model_inference_details(prompt)

print(f"Prompt:{inference_details['prompt']}")
print(f"模型输出:{inference_details['output']}")
print(f"生成的Token:{inference_details['tokens'][:10]}")

# 可视化Token概率
visualize_token_probabilities(
    inference_details["tokens"],
    inference_details["token_logprobs"]
)

# 打印前3个Token的候选词
for i in range(3):
    print(f"\nToken {i+1}{inference_details['tokens'][i]}")
    print("候选词及概率:")
    for candidate, lp in inference_details["top_logprobs"][i].items():
        prob = np.exp(lp)
        print(f"  {candidate}: {prob:.4f}")
结果分析

假设模型生成的第一个Token是def,其候选词及概率可能是:

  • def: 0.9998
  • To: 0.0001
  • A: 0.00005

这说明模型很确定第一个Token应该是def

如果生成的第5个Token是sorted,而候选词中stable_sort的概率只有0.001,说明模型“没理解Prompt中的‘稳定’要求”——这时候你需要优化Prompt,比如明确要求“使用sorted函数并添加key=lambda x: (x, id(x))”。

多场景适配
  • 客服场景:查看模型生成“物流时间”时的Token概率,判断是否“不确定”;
  • 代码生成场景:查看模型生成“稳定排序”相关Token的概率,判断是否“理解要求”;
  • 数据分析场景:查看模型生成“结论”时的Token概率,判断是否“有信心”。

技巧4:多维度指标体系——从“有没有用”到“有多好用”的量化评估

问题背景

你为客服AI设计了Prompt,运行一段时间后,你想知道“这个Prompt好不好用”——但传统指标(如QPS、延迟)只能告诉你“系统有没有运行”,无法告诉你“回答准不准确”“用户满不满意”。

痛点:缺乏“效果指标”,导致“优化方向模糊”。

设计思路

建立分层指标体系,覆盖“基础运行→质量效果→用户反馈”三个层面——就像电商的商品评价,不仅要看“有没有货”(基础指标),还要看“质量好不好”(质量指标),更要看“用户满不满意”(用户指标)。

指标体系设计

我们将指标分为3层,每层包含具体的指标项和计算方法:

层级指标项计算方法
基础运行层Prompt执行成功率成功执行的Prompt数 / 总Prompt数
模型响应时间模型从接收Prompt到返回结果的平均时间
上下文长度每轮对话的上下文平均token数
质量效果层回答相关性LLM评估:输出是否与Prompt和上下文相关(0-1分)
回答准确性领域专家/LLM评估:输出是否符合事实(0-1分)
代码运行成功率生成的代码能成功运行的比例(仅代码生成场景)
图表相关性CLIP模型评估:生成的图表是否与Prompt和数据相关(0-1分,仅多模态场景)
用户反馈层用户满意度用户打分的平均值(1-5分)
反馈整改率收到用户反馈后,能通过优化Prompt解决的比例
二次询问率用户对回答不满意,再次提问的比例
实现方法:用Prometheus+Grafana做指标监控

Prometheus是开源的监控系统,Grafana是开源的可视化工具——两者结合可以实现指标的“收集→存储→可视化”。

代码示例:FastAPI+Prometheus
from fastapi import FastAPI, Query
from prometheus_fastapi_instrumentator import Instrumentator
import prometheus_client as pc
from typing import Optional

app = FastAPI(title="Prompt System Metrics")
Instrumentator().instrument(app).expose(app)

# 1. 基础运行层指标
prompt_execution_total = pc.Counter(
    "prompt_execution_total",
    "Total number of prompt executions",
    ["template_id", "scene"]
)
prompt_execution_success = pc.Counter(
    "prompt_execution_success_total",
    "Total number of successful prompt executions",
    ["template_id", "scene"]
)
prompt_execution_failure = pc.Counter(
    "prompt_execution_failure_total",
    "Total number of failed prompt executions",
    ["template_id", "scene"]
)
model_response_time = pc.Histogram(
    "model_response_time_seconds",
    "Time taken for model to respond",
    ["template_id", "scene"]
)
context_length = pc.Histogram(
    "context_length_tokens",
    "Length of context in tokens",
    ["scene"]
)

# 2. 质量效果层指标
answer_relevance = pc.Gauge(
    "answer_relevance_score",
    "Relevance of model answer to prompt and context (0-1)",
    ["template_id", "scene"]
)
code_run_success_rate = pc.Gauge(
    "code_run_success_rate",
    "Rate of successfully running generated code (0-1)",
    ["template_id", "scene"]
)

# 3. 用户反馈层指标
user_satisfaction = pc.Gauge(
    "user_satisfaction_score",
    "User satisfaction score (1-5)",
    ["template_id", "scene"]
)
second_query_rate = pc.Gauge(
    "second_query_rate",
    "Rate of users asking a second question (0-1)",
    ["scene"]
)

@app.post("/execute_prompt")
async def execute_prompt(
    template_id: str = Query(...),
    scene: str = Query(...),
    prompt: str = Query(...),
    context_tokens: int = Query(...),
    relevance_score: Optional[float] = Query(None),
    code_success: Optional[bool] = Query(None)
):
    """模拟执行Prompt并记录指标"""
    prompt_execution_total.labels(template_id=template_id, scene=scene).inc()
    
    try:
        # 模拟模型调用(记录响应时间)
        start_time = pc.utils.time.time()
        # model.generate(prompt)
        end_time = pc.utils.time.time()
        model_response_time.labels(template_id=template_id, scene=scene).observe(end_time - start_time)
        
        # 记录上下文长度
        context_length.labels(scene=scene).observe(context_tokens)
        
        # 记录质量效果指标
        if relevance_score is not None:
            answer_relevance.labels(template_id=template_id, scene=scene).set(relevance_score)
        if code_success is not None:
            code_run_success_rate.labels(template_id=template_id, scene=scene).set(1 if code_success else 0)
        
        prompt_execution_success.labels(template_id=template_id, scene=scene).inc()
        return {"status": "success"}
    except Exception as e:
        prompt_execution_failure.labels(template_id=template_id, scene=scene).inc()
        return {"status": "failure", "error": str(e)}

@app.post("/record_feedback")
async def record_feedback(
    template_id: str = Query(...),
    scene: str = Query(...),
    satisfaction: int = Query(..., ge=1, le=5),
    is_second_query: bool = Query(...)
):
    """记录用户反馈指标"""
    user_satisfaction.labels(template_id=template_id, scene=scene).set(satisfaction)
    second_query_rate.labels(scene=scene).set(1 if is_second_query else 0)
    return {"status": "success"}
可视化示例:Grafana Dashboard

你可以用Grafana创建一个Dashboard,展示以下图表:

  • 基础运行层:Prompt执行成功率趋势图、模型响应时间直方图;
  • 质量效果层:回答相关性得分雷达图、代码运行成功率饼图;
  • 用户反馈层:用户满意度折线图、二次询问率热力图。
多场景适配
  • 客服场景:重点监控“回答准确性”“用户满意度”“二次询问率”;
  • 代码生成场景:重点监控“代码运行成功率”“回答相关性”;
  • 数据分析场景:重点监控“图表相关性”“用户满意度”。

技巧5:场景化观测规则——从通用到个性化的异常检测

问题背景

你为客服AI设计了通用的异常检测规则:“如果回答中包含‘不知道’,则标记为异常”。但在代码生成场景中,“不知道”不是异常,“生成的代码有语法错误”才是异常——通用规则无法覆盖多场景的差异。

痛点:通用异常检测规则“水土不服”,导致“误报/漏报”。

设计思路

针对每个场景定义个性化的观测规则——就像医院的科室,内科和外科的检查项目不一样,提示系统的不同场景也需要不同的异常检测规则。

规则设计框架

我们将场景化规则分为3类:语法规则逻辑规则业务规则

规则类型说明示例(代码生成场景)示例(客服场景)
语法规则检查输出的语法正确性生成的代码是否有语法错误回答是否符合口语化要求
逻辑规则检查输出的逻辑合理性生成的排序函数是否是稳定排序回答的物流时间是否与工具返回一致
业务规则检查输出的业务合规性生成的代码是否调用了禁止的库(如os)回答是否包含敏感信息(如手机号)
实现方法:用规则引擎+LLM做场景化检测

对于语法规则(如代码语法检查),可以用传统的规则引擎(如ast模块、正则表达式);对于逻辑/业务规则(如回答是否符合业务知识库),可以用LLM做语义分析。

代码示例:代码生成场景的语法+逻辑规则检测
import ast
from openai import OpenAI

client = OpenAI()

def check_code_syntax(code: str) -> dict:
    """检查代码语法(语法规则)"""
    try:
        ast.parse(code)
        return {"is_valid": True, "error": None}
    except SyntaxError as e:
        return {
            "is_valid": False,
            "error": f"Syntax error at line {e.lineno}, column {e.offset}: {e.msg}"
        }

def check_stable_sort_logic(code: str) -> dict:
    """检查稳定排序逻辑(逻辑规则)"""
    prompt = f"""
    请分析以下Python代码是否实现了稳定排序:
    {code}
    
    要求:
    1. 稳定排序的定义是“保持相等元素的相对顺序”;
    2. 回答“是”或“否”,并说明原因。
    """
    response = client.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=[{"role": "user", "content": prompt}],
        temperature=0
    )
    result = response.choices[0].message.content.strip()
    is_stable = "是" in result
    return {"is_stable": is_stable, "reason": result}

# 示例使用
good_code = """
def stable_sort(arr):
    return sorted(arr, key=lambda x: (x, id(x)))
"""
bad_code = """
def stable_sort(arr):
    return sorted(arr)  # 缺少id(x),不是稳定排序
"""

# 检查语法
print(check_code_syntax(good_code))  # {"is_valid": True, "error": None}
print(check_code_syntax(bad_code))   # {"is_valid": True, "error": None}(语法正确,但逻辑错误)

# 检查逻辑
print(check_stable_sort_logic(good_code))  # {"is_stable": True, "reason": "..."}
print(check_stable_sort_logic(bad_code))   # {"is_stable": False, "reason": "..."}
多场景适配
  • 客服场景:用LLM检查回答是否符合业务知识库(比如“退款政策是7天无理由”);
  • 代码生成场景:用ast模块检查语法,用LLM检查逻辑;
  • 数据分析场景:用Pandas检查生成的分析代码是否能运行,用LLM检查结论是否符合数据逻辑。

技巧6:用户反馈闭环——从观测到优化的快速迭代

问题背景

你收集了很多用户反馈(比如“回答不准确”“代码不能运行”),但这些反馈没有和观测数据关联——你不知道“这个反馈对应的Prompt实例是哪个”“上下文是什么”“模型输出是什么”,导致无法快速定位问题。

痛点:反馈与观测数据“脱节”,导致“优化效率低”。

设计思路

用户反馈观测数据(Prompt实例、上下文快照、模型输出)关联,形成“观测→反馈→定位→优化”的闭环——就像电商的售后系统,用户反馈商品有问题,客服可以关联订单信息、物流信息,快速解决问题。

闭环流程设计
用户反馈系统观测数据工程师提示系统提交反馈(不满意)关联Prompt实例、上下文、模型输出展示关联数据优化Prompt提供更优的回答用户反馈系统观测数据工程师提示系统
实现方法:用反馈ID关联观测数据

每个用户反馈都分配一个反馈ID,并关联对应的:

  • Prompt实例ID(来自技巧1的全生命周期追踪);
  • 对话ID(来自技巧2的上下文快照);
  • 模型输出(来自技巧3的推理透视)。
代码示例:反馈系统与观测数据关联
import redis
from typing import Dict, Optional

r = redis.Redis(host="localhost", port=6379, db=0, decode_responses=True)

def submit_feedback(
    feedback_id: str,
    user_id: str,
    prompt_instance_id: str,
    conversation_id: str,
    satisfaction: int,
    comment: str
):
    """提交用户反馈并关联观测数据"""
    feedback = {
        "feedback_id": feedback_id,
        "user_id": user_id,
        "prompt_instance_id": prompt_instance_id,
        "conversation_id": conversation_id,
        "satisfaction": satisfaction,
        "comment": comment,
        "timestamp": datetime.utcnow().isoformat()
    }
    # 存储反馈到Redis
    r.hset(f"feedback:{feedback_id}", mapping=feedback)

def get_feedback_with_observability(feedback_id: str) -> Optional[Dict]:
    """获取反馈及关联的观测数据"""
    feedback = r.hgetall(f"feedback:{feedback_id}")
    if not feedback:
        return None
    
    # 关联Prompt实例数据(假设用技巧1的OTel数据存储在数据库中)
    prompt_instance = get_prompt_instance(feedback["prompt_instance_id"])
    # 关联上下文快照(来自技巧2)
    context_snapshots = get_context_snapshots(feedback["conversation_id"])
    # 关联模型输出(来自技巧3)
    model_output = get_model_output(feedback["prompt_instance_id"])
    
    feedback["prompt_instance"] = prompt_instance
    feedback["context_snapshots"] = context_snapshots
    feedback["model_output"] = model_output
    
    return feedback

# 示例使用
feedback_id = "feedback_001"
submit_feedback(
    feedback_id=feedback_id,
    user_id="user_001",
    prompt_instance_id="prompt_001",
    conversation_id="convo_001",
    satisfaction=2,
    comment="回答的物流时间不对,实际还没发货"
)

# 获取反馈及关联数据
feedback_with_data = get_feedback_with_observability(feedback_id)
print(feedback_with_data)
优化示例:从反馈到Prompt优化

假设用户反馈“回答的物流时间不对”,关联的观测数据显示:

  • Prompt实例ID:prompt_001
  • 最终Prompt:“根据用户订单ID 123456 查询物流状态”
  • 模型输出:“你的订单已发货,预计明日到达”
  • 工具返回:“物流系统返回:未发货”(但Prompt中没有要求“使用最新的工具返回结果”)。

工程师可以快速定位问题:Prompt没有要求模型使用最新的工具返回结果。于是优化Prompt为:“根据用户订单ID {order_id} 查询最新的物流状态(参考工具返回:{tool_response}),用口语化回复”

技巧7:多模态观测——覆盖文本、代码、图像等复杂输出的全维度监控

问题背景

你为数据分析AI扩展了多模态输出(生成图表),但生成的图表与数据不符——比如用户要求“分析月度销量趋势”,模型生成的图表是“季度销量”。你不知道是Prompt没说明“月度”,还是模型没理解,或者是图表生成工具的问题。

痛点:多模态输出(图像、代码、语音)的观测方法缺失,导致“问题定位困难”。

设计思路

针对不同模态的输出,设计针对性的观测方法——就像博物馆的监控系统,不仅要监控人员流动(文本),还要监控展品的状态(图像)、环境的声音(语音)。

多模态观测方法
模态观测方法工具/技术
文本相关性、准确性、合规性LLM、正则表达式
代码语法检查、运行结果验证ast模块、Docker、单元测试
图像分辨率、内容相关性、准确性OpenCV、CLIP模型、OCR
语音转文本准确性、情感分析Whisper、 librosa
代码示例:图像生成场景的内容相关性检测

我们用CLIP模型(OpenAI开发的多模态模型)判断生成的图像是否与Prompt相关——CLIP能计算“图像”与“文本Prompt”的相似度,相似度越高,说明图像越符合要求。

import torch
from PIL import Image
from clip import clip
import requests
from io import BytesIO

# 加载CLIP模型
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)

def check_image_relevance(image_path: str, prompt: str) -> dict:
    """检查图像与Prompt的相关性"""
    # 加载图像(支持本地路径或URL)
    if image_path.startswith("http"):
        response = requests.get(image_path)
        image = Image.open(BytesIO(response.content))
    else:
        image = Image.open(image_path)
    
    # 预处理图像和文本
    image_input = preprocess(image).unsqueeze(0).to(device)
    text_input = clip.tokenize([prompt]).to(device)
    
    # 计算相似度
    with torch.no_grad():
        image_features = model.encode_image(image_input)
        text_features = model.encode_text(text_input)
        # 归一化特征向量
        image_features /= image_features.norm(dim=-1, keepdim=True)
        text_features /= text_features.norm(dim=-1, keepdim=True)
        # 相似度=点积(CLIP的设计)
        similarity = (image_features @ text_features.T).item()
    
    # 设定相似度阈值(如0.3,可根据场景调整)
    is_relevant = similarity > 0.3
    return {
        "similarity": similarity,
        "is_relevant": is_relevant,
        "prompt": prompt,
        "image_path": image_path
    }

# 示例使用
# 符合要求的图像(猫在海边)
image1 = "https://example.com/cat_beach.jpg"
prompt1 = "一只猫在海边的图片"
result1 = check_image_relevance(image1, prompt1)
print(result1)  # {"similarity": 0.45, "is_relevant": True, ...}

# 不符合要求的图像(狗在公园)
image2 = "https://example.com/dog_park.jpg"
prompt2 = "一只猫在海边的图片"
result2 = check_image_relevance(image2, prompt2)
print(result2)  # {"similarity": 0.15, "is_relevant": False, ...}
多场景适配
  • 代码生成场景:用Docker运行生成的代码,检查是否能成功执行;
  • 数据分析场景:用CLIP检查生成的图表是否与Prompt相关;
  • 语音助手场景:用Whisper将语音转文本,检查转写准确性。

4. 实际应用:搭建多场景AI助手的可观测性系统

现在,我们将上述7个技巧整合起来,搭建一个多场景AI助手的可观测性系统——覆盖客服、代码生成、数据分析三个场景。

4.1 系统架构

graph TD
    A[用户] --> B[AI助手]
    B --> C[Prompt生成模块]
    C --> D[OTel链路追踪]  # 技巧1
    C --> E[Redis上下文快照]  # 技巧2
    B --> F[LLM模型]
    F --> G[logprobs推理透视]  # 技巧3
    B --> H[多模态输出模块]
    H --> I[CLIP图像检测]  # 技巧7
    H --> J[ast代码检查]  # 技巧5
    B --> K[Prometheus指标收集]  # 技巧4
    K --> L[Grafana可视化]
    A --> M[反馈系统]
    M --> N[观测数据关联]  # 技巧6
    N --> O[工程师优化Prompt]
    O --> C

4.2 实现步骤

  1. 搭建Prompt生成模块:用技巧1的OTel做全生命周期追踪,记录Prompt的生成流程;
  2. 搭建上下文管理模块:用技巧2的Redis存储上下文快照;
  3. 集成LLM模型:用技巧3的logprobs参数获取模型推理细节;
  4. 搭建多模态输出模块:用技巧7的CLIP检查图像相关性,用ast检查代码语法;
  5. 搭建指标监控系统:用技巧4的Prometheus+Grafana收集并可视化指标;
  6. 搭建反馈系统:用技巧6的反馈ID关联观测数据,实现闭环;
  7. 设计场景化规则:用技巧5的规则引擎+LLM做异常检测。

4.3 常见问题及解决方案

  1. 观测数据量太大
    • 解决方案:用采样策略(比如只记录异常实例、按比例采样),或者用数据归档(将旧数据存储到S3等低成本存储)。
  2. LLM评估质量指标太慢
    • 解决方案:用轻量化LLM(比如Llama 2 7B、Mistral 7B)做初步评估,或者用批量处理(将多个评估任务合并为一个请求)。
  3. 多模态观测成本高
    • 解决方案:用异步处理(比如生成图像后,后台异步
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值