自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(923)
  • 收藏
  • 关注

原创 AI原生应用中的增量学习:案例与代码

增量学习是一种动态学习范式,它允许模型在不重新训练整个模型的前提下,逐步吸收新数据的知识,同时保留旧数据的知识。用一句话概括:增量学习 = 学新东西 + 不丢旧东西 + 高效更新# 转换用户ID和电影ID为连续整数(避免ID断层)return (# 加载数据old_ratings = ratings[ratings['timestamp'] < 974723210] # 前80万条。

2025-08-09 03:49:23 538

原创 计算机视觉AI原生应用:模型评估的完整指南

在计算机视觉(CV)领域,模型评估不是开发的“最后一步”,而是贯穿全流程的“导航仪”——它像一面“技术镜子”,照出模型的优势、缺陷与适配场景;也像一把“优化钥匙”,帮你定位问题(比如漏检小目标、误分相似类)、调整策略(比如换损失函数、增数据增强)。本文将用“生活化比喻+实战代码+可视化工具”,帮你建立完整的CV模型评估体系:从“为什么要评估”的底层逻辑,到“分类/检测/分割”三大任务的指标选择,再到“如何用代码计算指标、分析结果、优化模型”的实战步骤。

2025-08-09 02:27:24 568

原创 AI原生应用新趋势:模型蒸馏技术深度剖析

软损失:学生logits与教师logits的交叉熵(带温度)# 硬损失:学生logits与真实标签的交叉熵# 总损失AI原生应用的核心,是**“让AI从云端走进终端”**——从大模型的“实验室”,到手机、摄像头、手表的“真实世界”。而模型蒸馏,就是连接这两个世界的“桥梁”:它让大模型的能力“浓缩”成小模型,让AI真正“触手可及”。背后是模型蒸馏在“传递知识”——把大模型的“聪明”,变成小设备的“快捷”。技术的进步,从来不是“更大、更复杂”,而是“更巧、更实用”。

2025-08-09 01:05:29 186

原创 AI原生应用领域AI工作流的实战案例分享

在探讨AI工作流之前,需先明确两个核心概念的边界——AI原生应用与AI工作流,这是理解后续案例的基础。滑动窗口:当代码上下文超过模型的最大输入长度(如CodeLlama的2048 token)时,采用滑动窗口策略(如保留最近的1000 token),确保模型能处理当前代码片段;摘要压缩:对长上下文(如整个文件的代码)进行摘要压缩(如用CodeLlama生成代码的摘要),减少token占用(如将1000 token的代码压缩为200 token的摘要)。AI原生应用的核心竞争力在于AI工作流的设计与优化。

2025-08-08 23:37:04 432

原创 AI原生应用领域多租户,打造智能客服新体系

AI原生是基础:只有从设计之初就以大模型、Agent为核心,才能实现「真正的智能」;多租户是 scalability关键:只有通过共享资源、隔离专属,才能支持大规模租户;智能客服是落地场景:只有解决用户的真实痛点(比如「快速解决问题」「个性化服务」),技术才有价值;平衡是艺术:共享与专属、个性化与成本、泛化与定制,这些矛盾需要通过技术和产品设计来平衡。

2025-08-08 22:08:31 548

原创 AI原生多代理系统的联邦学习实现方案

现在的AI模型越来越依赖数据,但数据分散+隐私敏感医院有患者的医疗影像数据,但不敢随便分享(隐私法规限制);工厂有设备的传感器数据,但不想给竞争对手看(商业机密);手机里有你的聊天记录,但你肯定不愿上传到服务器(个人隐私)。如果强行把数据集中起来训练模型,要么违法、要么不安全;但只用单机构的数据训练,模型效果又差——这就是“数据孤岛”的困境。# 卷积层1:输入1通道(灰度图),输出16通道,卷积核3x3# 卷积层2:输入16通道,输出32通道,卷积核3x3。

2025-08-08 20:40:02 602

原创 向量数据库在金融风控AI系统中的实践分享

金融风控是金融科技的核心环节,其目标是识别欺诈交易、账户盗用、团伙欺诈等风险行为。随着AI技术的普及,风控系统越来越依赖高维特征(如用户行为序列、设备指纹、文本评论)和实时决策(如交易发生时的毫秒级风险判断)。然而,传统关系型数据库(如MySQL)在存储高维特征时效率低下,实时检索慢;Elasticsearch等全文检索工具无法高效处理向量相似性查询(如“找到与当前用户行为最相似的10个欺诈用户”)。本文提出向量数据库+风控模型。

2025-08-08 19:03:35 510

原创 量化价值投资与多因子模型的完美结合

你是否遇到过这样的困惑?明明认同格雷厄姆的“安全边际”理念,却总在“判断便宜”时陷入主观纠结——这个股票PE=5到底是真便宜,还是陷阱?想分散投资却力不从心——手动分析100只股票需要一周,等你选好标的,行情早就变了;看到别人的量化策略年化收益20%,自己尝试却踩坑:要么因子过度拟合,要么选到“垃圾股”被套。问题的核心:传统价值投资依赖“定性判断+经验”,难以规模化;而纯量化策略常脱离基本面,陷入“数据挖矿”陷阱。解决方案:用多因子模型。

2025-08-08 17:25:57 431

原创 计算机视觉AI原生应用开发指南

计算机视觉是让计算机“看懂”图像/视频的技术。图像分类(Image Classification):判断图片中的物体是什么(比如“猫”“狗”);目标检测(Object Detection):找出图片中的物体,并画框标记(比如“这有一只猫,在图片的左上角”);语义分割(Semantic Segmentation):给图片中的每个像素分类(比如“这部分是天空,那部分是草地”)。我们今天做的图像分类是CV中最基础也最常用的任务,适合新手入门。输入(图像/视频)→ AI模型(处理)→ 输出(结果/动作)

2025-08-08 15:49:59 713

原创 AI原生应用中的短期记忆机制:5大核心原理深度解析

AI原生应用(AI-Native Application)。它不是传统软件“加个AI插件”,而是从架构设计到功能实现,完全以AI模型(尤其是大语言模型,LLM)为核心的应用。对话式AI(ChatGPT、Claude);多模态生成工具(MidJourney、DALL·E 3);智能助手(Google Assistant、Apple Siri的下一代);代码生成工具(GitHub Copilot、CodeWhisperer)。这些应用的核心能力,是。

2025-08-08 14:27:17 505

原创 AI原生应用自适应界面:解决多设备适配的终极方案

为手机端写的媒体查询,在折叠屏展开时变成“四不像”;平板端的侧边栏在用户左手操作时,点击区域太靠右导致误触;迭代新功能时,要修改3套布局(手机/平板/桌面),维护成本指数级上升。传统自适应方案(媒体查询、栅格系统)的核心是“规则驱动”——靠开发者预判所有设备场景,写死断点和布局。但面对越来越复杂的设备形态(折叠屏、可卷曲屏、多窗口)和个性化需求(用户操作习惯、使用场景),这种“笨办法”已经力不从心。那有没有一种“智能驱动”的方案,让界面能“感知”设备、用户和场景,自动生成最优布局?答案是。

2025-08-08 13:04:57 470

原创 基于AI原生的跨平台用户画像统一建模实践

我是张三,资深数据科学家,拥有10年用户画像实践经验,曾在阿里、腾讯等公司负责跨平台用户画像项目。擅长用AI技术解决数据孤岛问题,推动业务增长。欢迎关注我的公众号“数据科学实战”,获取更多技术干货。声明:本文中的案例数据均为虚构,如有雷同,纯属巧合。

2025-08-08 11:42:42 749

原创 震惊!AI原生应用内容过滤竟藏着这些鲜为人知的秘密

本文深入探讨了AI原生应用内容过滤背后的秘密。首先介绍了内容过滤相关的基础概念和前置知识,包括自然语言处理、图像识别、深度学习等技术在内容过滤中的应用。接着详细解析了内容过滤的核心原理,从数据采集、预处理到模型训练与评估,以及实际的源码和伪代码分析,展示了内容过滤系统的构建过程。通过实际案例分析,探讨了内容过滤在社交媒体、搜索引擎、视频分享平台等不同场景下的应用,以及其呈现出的优缺点和适用性。

2025-08-08 10:14:17 380

原创 实战案例:用链式思考构建高效AI原生应用

在讲实战前,先花5分钟搞懂CoT的核心逻辑——它不是“技巧”,而是“思维方式”。让语言模型(LLM)在输出最终答案前,先生成“中间推理步骤”。普通prompt:“3x + 5 = 14,求x?” → AI直接输出“x=3”;CoT prompt:“3x + 5 = 14,求x?请写出每一步的思考过程。” → AI输出:先把等式两边减5:3x = 14 - 5 = 9;再把两边除以3:x = 9 ÷ 3 = 3;最终答案:x=3。看起来只是多了“思考过程”,但背后的逻辑是。

2025-08-08 03:38:46 121

原创 业务流程增强新趋势:AI原生应用的落地方法论

当企业还在为“AI怎么辅助现有流程”挠头时,AI原生应用已成为重构业务的新范式——它不是给传统流程“贴AI膏药”,而是用大模型的泛化能力、Agent的自主决策,重新设计“从目标到结果”的动态流程。本文将拆解AI原生应用的底层逻辑:从“为什么传统AI不管用”讲起,用“智能秘书”类比Agent系统,用“滚雪球”解释数据飞轮,再用零售、医疗的真实案例演示落地步骤。你会发现:AI原生不是技术升级,而是业务逻辑的底层重构——让流程从“人指挥系统”变成“系统辅助人决策”,最终实现“系统自主优化”。综合以上三点,

2025-08-08 02:16:50 262

原创 解析AI原生应用领域RAG的性能优化策略

某电商平台的客服系统需要处理用户的退货问题(如“如何申请退货?”“退货需要什么材料?检索准确性低(经常检索到旧政策文档);响应速度慢(平均3秒);幻觉率高(15%的回答包含编造信息)。数据是基础:数据处理(增量更新、结构化、Chunk策略)直接决定检索准确性;检索是关键:混合检索(Dense+Sparse)、索引优化(向量索引、元数据过滤)、多轮检索是提高检索性能的核心;生成是终点:上下文压缩、指令工程、模型微调、生成加速是提高生成性能的关键;端到端是协同。

2025-08-08 00:41:18 305

原创 量化价值投资中的利率风险分散化:跨市场配置案例

利率风险是指由于市场利率变动的不确定性导致金融资产价格和收益发生波动的风险。重新定价风险:也称为期限错配风险,当金融机构的资产和负债的期限不匹配时,利率变动会导致净利息收入发生变化。例如,银行吸收短期存款发放长期贷款,如果利率上升,银行的资金成本增加,而贷款收益短期内不变,就会导致净利息收入减少。收益率曲线风险:收益率曲线反映了不同期限债券的收益率关系。当收益率曲线的形状发生变化时,会对投资组合产生影响。

2025-08-07 23:13:06 190

原创 AI原生应用:人机协作的未来已来,这些技术你必须掌握!

AI原生应用不是“AI取代人”,而是“人与AI共同创造价值”。作为开发者,我们需要掌握Prompt工程、上下文记忆、多模态交互、工具调用、安全与可解释性等核心技术,才能打造出真正符合用户需求的AI原生应用。未来已来,人机协作的时代已经开启。让我们一起,用技术创造更美好的未来!附录:参考资料《AI-Native Applications: The Future of Human-AI Collaboration》(论文);

2025-08-07 21:46:18 584

原创 AI原生应用进阶:基于深度学习的意图识别实践

当你对着智能助手说“我要订明天去北京的机票,靠窗”,它却回复“请问你要订什么类型的机票?”时——意图识别失败,是AI最让人崩溃的时刻。作为AI原生应用的“核心感知层”,意图识别决定了AI能否真正“听懂”用户需求:它要从模糊的自然语言中提取“动作”(意图)、“参数”(槽位),还要结合上下文(历史对话)补全信息。本文将从生活场景入手,拆解意图识别的核心逻辑;用Transformer自注意力解释深度学习如何解决传统方法的痛点;通过完整代码案例(基于BERT)教你构建一个能处理多轮对话的意图识别系统;

2025-08-07 20:24:25 531

原创 情感分析领域革命:AI原生技术带来的5大变革

情感分析(Sentiment Analysis)作为自然语言处理(NLP)的核心任务之一,长期以来致力于从文本、语音、图像等数据中提取人类的情绪状态(如正面、负面、中性)。上下文理解局限:无法处理讽刺、反话等复杂语言现象(如“这手机续航真‘厉害’,半天就没电了”);多模态融合困难:难以整合文本、图像、语音等多源信息(如社交媒体中的“文字+表情包”组合);跨领域泛化能力弱:在电商评论中表现良好的模型,往往无法直接迁移到医疗对话场景。

2025-08-07 17:20:41 372

原创 现金流折现模型在量化价值投资中的创新应用

传统DCF的“痛点”到底在哪里?(比如“未来现金流怎么算准?”“折现率凭什么是8%?”)量化投资如何“修复”这些痛点,让DCF从“理论工具”变成“实战武器”?范围覆盖:DCF核心逻辑→量化改造的三大创新点→完整Python实战→应用场景与未来趋势。用“卖奶茶店”的故事讲清传统DCF;拆解传统DCF的3个痛点;量化DCF的3大创新(因子模型预测FCF、机器学习调折现率、蒙特卡洛算终端价值);Python实战:用量化DCF选苹果公司的股票;应用场景:如何用量化DCF做行业配置;

2025-08-07 12:37:56 505

原创 深入探究量化价值投资中的多因子模型

在价值投资的江湖里,巴菲特靠“模糊的正确”击败市场,而量化投资者则用“精确的系统”复制传奇。多因子模型就是量化价值投资的“核心引擎”——它像一个由多个评委组成的选美团,通过财务、价格、宏观等多维度因子给股票打分,最终选出“颜值与才华兼备”的优质标的。本文将从生活化比喻入手,拆解多因子模型的底层逻辑;用代码示例还原因子挖掘、筛选、建模的全流程;通过案例分析展示如何用多因子策略赚真金白银;最后展望未来趋势,探讨AI与另类数据如何重塑因子模型。

2025-08-07 11:00:29 260

原创 自然语言生成在AI原生应用中的未来发展趋势

当我们谈论「AI原生应用」时,我们在谈论什么?不是给旧App加个AI聊天框,不是用AI生成几句文案凑数——而是从架构底层到用户交互,全链路以AI能力为核心驱动的新型应用。比如Notion AI让文档写作从「打字」变成「协作」,GitHub Copilot让代码开发从「手动敲」变成「AI陪写」,这些产品的本质,是用AI重新定义「人与工具的关系」。而自然语言生成(NLG),作为AI理解与输出能力的核心载体,正在从「内容生成工具」进化为「用户需求的翻译器」与「场景协作的伙伴」。

2025-08-07 09:23:13 195

原创 AI原生行为分析在自动驾驶感知系统中的应用

自动驾驶的核心矛盾在于感知系统的“认知深度”与复杂交通环境的“不确定性”——传统感知仅能回答“目标是什么、在哪里”,却无法理解“目标在做什么、会做什么”。AI原生行为分析以“从数据表示到模型架构的全栈原生设计”为核心,将感知系统从“被动检测”升级为“主动认知”:通过时空行为建模理解目标意图、用因果推理解析交互逻辑、以多模态融合消除信息歧义,最终实现“预测性感知”的突破。

2025-08-07 02:59:34 625

原创 利用市盈率提升量化价值投资的效率

作为价值投资的“入门指标”,市盈率(PE)几乎是每个投资者的“必修课”——我们都听过“买低PE股更安全”“PE太高的股票泡沫大”。但现实中,90%的投资者都在用错误的方式使用PE盯着“静态PE”买股,却没意识到它反映的是“过去的盈利”,无法应对业绩突变;盲目追求“全市场最低PE”,结果买了周期股的“顶部陷阱”(比如2021年的钢铁股,PE低时正好是价格顶点);忽略PE背后的“公司质量”,买了看似低PE的“垃圾股”(比如ST股,净利润为负时PE会被扭曲)。这些问题的核心不是PE没用,而是。

2025-08-07 01:27:35 626

原创 实战分享:基于Transformer的上下文理解实现

上下文理解是自然语言处理(NLP)的核心难题——机器需像人类一样,通过前后文语义关联消除歧义、推理意图。Transformer的出现彻底改变了这一领域:其自注意力机制(Self-Attention)通过可学习的权重动态聚合上下文信息,既解决了RNN的长距离依赖衰减问题,又实现了并行计算。本文从原理推导→代码实现→生产优化的全链路展开,结合实战案例(如多轮对话、长文本摘要),讲解Transformer上下文理解的核心逻辑;

2025-08-07 00:05:40 545

原创 工作记忆模型过拟合?AI原生应用开发避坑指南

AI原生应用的核心竞争力在于动态理解上下文并做出适应性决策,而这一能力的底层支撑是「工作记忆模型」——模拟人类短期记忆的AI架构模块。工作记忆模型的过拟合——模型过度依赖训练数据中的特定上下文模式,导致真实场景中对新用户、新任务的适应性急剧下降。本文从认知科学的第一性原理出发,拆解AI工作记忆的本质;结合Transformer架构的数学形式化分析,揭示过拟合的深层机制;通过工业级案例(如对话系统、代码助手)演示如何设计「抗过拟合」的工作记忆架构;最终给出覆盖需求定义→架构设计→部署运营全流程的避坑指南。

2025-08-06 22:33:30 601 1

原创 AI原生应用商业化:4个盈利思维框架与案例分析

AI原生应用≠“传统应用+AI模块”。AI原生应用(AI-Native Application)是以AI为核心能力,从用户需求、产品架构到价值交付全链路由AI驱动的应用。需求原生:解决的问题是传统方法无法高效解决的(如自然语言理解、图像生成、复杂预测);架构原生:模型是产品的“发动机”,而非“插件”(如ChatGPT的核心是GPT模型,而非UI界面);体验原生:用户交互依赖AI能力(如语音对话、自动生成内容、智能推荐)。AI原生应用的商业化不是“卖模型”,而是“卖能力”“卖价值”“卖生态”。

2025-08-06 21:01:23 520

原创 AI原生图像生成在电商领域的创新应用案例分析

在当今数字化的商业世界中,电商行业竞争日益激烈。吸引消费者的注意力并提供独特的购物体验变得至关重要。AI原生图像生成技术的出现为电商领域带来了前所未有的创新机遇。这项技术能够根据特定的描述、风格或参数生成高度逼真且个性化的图像,极大地改变了电商企业展示产品、与消费者互动以及进行营销的方式。本文将深入分析AI原生图像生成在电商领域的多个创新应用案例,探讨其背后的技术原理、实现方式以及对电商业务的影响。

2025-08-06 19:29:17 820

原创 Claude助力AI原生应用,解锁前所未有的应用场景

如果把AI原生应用比作“智能汽车”,Claude就是“发动机+导航+驾驶辅助系统”——它把用户的需求(“我要去机场”)翻译成系统能理解的指令(“规划最快路线、调整车速、避开拥堵”),再把系统的输出(“前方1公里右转”)翻译成用户能理解的结果(“导航提示”)。接下来,定义该痛点背后的“核心认知需求”——即“需要AI帮用户做什么认知工作”。教育领域的核心认知需求:“分析学生的学习数据,生成个性化学习路径”;医疗领域的核心认知需求:“从病历中提取关键信息,生成诊断建议”;

2025-08-06 17:58:11 905

原创 《AI原生应用如何巧妙实现业务流程增强,这篇文章告诉你》

AI原生应用的核心,不是用AI“替代”人类,而是用AI“增强”人类的能力——让业务流程更智能、更高效、更贴合用户需求。对于开发者来说,需要从“写规则”转向“设计AI的思考逻辑”;对于产品经理来说,需要从“设计界面”转向“设计用户意图的流转路径”;对于业务负责人来说,需要从“优化流程步骤”转向“优化AI的决策模型”。“AI原生不是未来时,而是现在进行时。从今天开始,试着用AI原生的思路重构一个小场景(比如智能客服、工单系统),你会看到不一样的业务价值。

2025-08-06 16:36:01 972

原创 AI原生应用安全防护:模型部署阶段的安全检查清单

我是张三,资深AI工程师,专注于AI安全与部署。拥有5年以上的AI应用开发经验,曾参与多个大型AI项目的安全设计与部署,包括医疗诊断模型、金融风险预测模型。我的博客主要分享AI安全、模型部署、MLOps等方面的经验,欢迎关注我的公众号“AI安全笔记”。

2025-08-06 15:13:16 628

原创 深度学习在智能推荐系统中的应用与挑战

推荐系统(Recommendation System)是一种信息过滤系统,旨在预测用户对物品的"评分"或"偏好",从而为用户提供个性化的推荐内容。协同过滤推荐(Collaborative Filtering)基于用户的协同过滤(User-based CF):找出与目标用户兴趣相似的其他用户,推荐这些用户喜欢的物品基于物品的协同过滤(Item-based CF):找出与目标物品相似的其他物品,推荐这些相似的物品基于内容的推荐(Content-based Recommendation)

2025-08-06 13:40:54 680

原创 AI原生应用可用性评估:A_B测试的最佳实践

目的:解释AI原生应用与传统应用的差异,说明A/B测试为何是其可用性评估的“最优解”。范围:覆盖A/B测试的全流程(假设→设计→分流→分析→结论),结合AI原生应用的特点(动态性、个性化、不确定性),给出可落地的实践指南。本文将按照“问题引入→概念拆解→原理讲解→实战演示→趋势展望用“奶茶店试新口味”的故事,引出A/B测试的核心逻辑;解释AI原生应用、可用性评估、A/B测试的概念及关系;讲解A/B测试的统计原理(假设检验、p值);用Python实现一个AI聊天机器人的A/B测试案例;

2025-08-06 12:14:06 825

原创 AI原生应用领域可解释性:解锁智能应用黑盒的关键

十年前,AI是“APP里的小功能”——比如拍照APP的“AI滤镜”、音乐APP的“AI推荐”,就像给普通手机贴了个“智能贴纸”。但今天,AI原生应用成了主流:ChatGPT(靠大语言模型生成对话)、DALL·E(靠扩散模型生成图片)、AlphaFold(靠深度学习预测蛋白质结构)——这些应用“生下来就是AI”,没有AI就没有它们的存在。但问题来了:AI原生应用越强大,“黑盒感”越强。

2025-08-06 10:51:45 849

原创 电商智能化解决方案

某美妆电商成立于2018年,主要销售国产美妆产品。获客成本高:每获取一个新用户需要花费80元;转化率低:首页点击率只有2%,转化率只有1%;库存积压:某款面膜的库存周转天数高达120天;客服压力大:人工客服每天要处理1000+个咨询,响应时间长达30分钟。电商智能化的核心是用技术解决具体问题,比如获客难、转化低、供应链低效;智能化解决方案覆盖用户运营、商品管理、供应链、智能客服、数据驱动五大核心环节;数据是智能化的基础,数据中台能帮你整合分散的数据,提供统一的数据服务;

2025-08-06 09:19:40 714

原创 AI SaaS产品的定价策略:从免费到企业级的完整方案

AI SaaS定价需解决以下四大矛盾成本覆盖 vs 客户接受度:高计算成本要求定价足够高,但客户对“按token付费”的接受度有限;规模化增长 vs 定制化需求:免费模式能快速获客,但企业级客户需要定制化功能(如专属模型),导致成本上升;价值量化 vs 定价透明度:客户希望“为效果付费”(如“按点击率付费”),但企业难以准确量化AI的贡献;短期收入 vs 长期留存:过高的定价会导致客户 churn(流失),过低的定价会影响企业盈利能力。AI SaaS的定价是一个复杂的系统工程。

2025-08-06 02:51:02 951

原创 解密!AI原生应用助力自动化流程的实战秘籍

财务报销:能处理电子发票,但手写的差旅单要人工核对;客户服务:能回复固定问题,但听不懂客户的"弦外之音"(比如"你们的快递怎么还没到?"背后的情绪);供应链管理:能跟踪物流单号,但预测不了"暴雨导致的延迟"。本文的目的,就是帮你理解AI原生应用如何解决这些"传统自动化解决不了的问题",范围聚焦在"流程自动化"领域(比如财务、客服、供应链等重复流程)。文章分"故事引入→概念拆解→架构设计→实战代码→应用场景→未来趋势"6大模块,像"拆乐高"一样一步步揭开AI原生应用的神秘面纱。AI原生应用。

2025-08-06 01:29:07 296

原创 量化价值投资过拟合的改进方案

量化价值投资是近年来机构与个人投资者的“心头好”——通过PE、PB、ROE等基本面指标筛选低估值、高成长股票,用数学模型替代主观判断,看似“科学又高效”。但很多人都遭遇过这样的噩梦:回测时策略收益率高达20%+,实盘运行却亏得一塌糊涂;参数稍微调整一点,结果就天差地别;甚至明明选了“价值股”,却买了一堆暴雷的垃圾股。这一切的根源,都是过拟合(Overfitting)——模型“记住了”历史数据中的噪音,却没学会真正的规律。本文将从过拟合的成因机制。

2025-08-05 23:51:54 870

原创 Multi-Agent系统的灵活性与可扩展性

Agent(智能体)是MAS的基本单元,本质是**“能自主感知环境、决策并执行动作的实体”**。感知模块:获取环境或用户的输入(如用户消息、传感器数据);决策模块:根据感知信息和自身规则/模型,生成动作(如回答用户问题、调整路线);执行模块:将决策转化为具体操作(如调用API、发送消息)。规则驱动的(如基于if-else的客服机器人);模型驱动的(如基于LLM的对话Agent);混合驱动的(如规则+强化学习的自适应Agent)。MAS是多个Agent通过通信与协作,共同完成复杂任务的系统。

2025-08-05 22:14:57 748

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除