在现代AI应用中,工具调用是一项强大的功能,允许模型调用预定义的函数或工具,并利用输出结果增强其响应能力。本指南将介绍如何在AI聊天模型中执行工具调用,并传递返回结果给模型。
技术背景介绍
工具调用是LangChain的一项关键功能,允许模型根据用户提供的方案生成参数并调用工具。此功能通常用于执行数学运算、数据检索或其他自动化操作。
核心原理解析
工具调用涉及几个步骤:
- 工具定义:定义具体的操作,如加法和乘法。
- 模型绑定工具:将工具与模型绑定,使模型能够调用工具。
- 消息处理:通过消息机制传递工具调用和结果。
代码实现演示
以下是详细的代码示例,展示如何设置工具并调用它们:
from langchain_core.tools import tool
# 定义加法和乘法工具
@tool
def add(a: int, b: int) -> int:
"""Adds a and b."""
return a + b
@tool
def multiply(a: int, b: int) -> int:
"""Multiplies a and b."""
return a * b
tools = [add, multiply]
# 绑定工具到模型
llm_with_tools = llm.bind_tools(tools)
from langchain_core.messages import HumanMessage
query = "What is 3 * 12? Also, what is 11 + 49?"
messages = [HumanMessage(query)]
# 调用工具并返回消息
ai_msg = llm_with_tools.invoke(messages)
print(ai_msg.tool_calls)
messages.append(ai_msg)
for tool_call in ai_msg.tool_calls:
selected_tool = {"add": add, "multiply": multiply}[tool_call["name"].lower()]
tool_msg = selected_tool.invoke(tool_call)
messages.append(tool_msg)
result_message = llm_with_tools.invoke(messages)
print(result_message.content)
应用场景分析
工具调用功能可用于多种实际场景,包括但不限于:
- 数据分析:快速计算统计指标。
- 数字运算:复杂数学公式计算。
- 信息处理:根据输入参数执行特定操作。
实践建议
- 确保工具定义清晰:每个工具的功能描述应明确,确保可以轻松理解和调用。
- 维护工具的一致性:确保工具参数和返回值符合预期,以便模型正确调用。
- 监控工具调用效率:观察工具调用的频率和响应速度,以优化流程。
如果遇到问题欢迎在评论区交流。
—END—