如何将工具输出传递给聊天模型

在现代AI应用中,工具调用是一项强大的功能,允许模型调用预定义的函数或工具,并利用输出结果增强其响应能力。本指南将介绍如何在AI聊天模型中执行工具调用,并传递返回结果给模型。

技术背景介绍

工具调用是LangChain的一项关键功能,允许模型根据用户提供的方案生成参数并调用工具。此功能通常用于执行数学运算、数据检索或其他自动化操作。

核心原理解析

工具调用涉及几个步骤:

  1. 工具定义:定义具体的操作,如加法和乘法。
  2. 模型绑定工具:将工具与模型绑定,使模型能够调用工具。
  3. 消息处理:通过消息机制传递工具调用和结果。

代码实现演示

以下是详细的代码示例,展示如何设置工具并调用它们:

from langchain_core.tools import tool

# 定义加法和乘法工具
@tool
def add(a: int, b: int) -> int:
    """Adds a and b."""
    return a + b

@tool
def multiply(a: int, b: int) -> int:
    """Multiplies a and b."""
    return a * b

tools = [add, multiply]

# 绑定工具到模型
llm_with_tools = llm.bind_tools(tools)

from langchain_core.messages import HumanMessage

query = "What is 3 * 12? Also, what is 11 + 49?"

messages = [HumanMessage(query)]

# 调用工具并返回消息
ai_msg = llm_with_tools.invoke(messages)
print(ai_msg.tool_calls)

messages.append(ai_msg)

for tool_call in ai_msg.tool_calls:
    selected_tool = {"add": add, "multiply": multiply}[tool_call["name"].lower()]
    tool_msg = selected_tool.invoke(tool_call)
    messages.append(tool_msg)

result_message = llm_with_tools.invoke(messages)
print(result_message.content)

应用场景分析

工具调用功能可用于多种实际场景,包括但不限于:

  • 数据分析:快速计算统计指标。
  • 数字运算:复杂数学公式计算。
  • 信息处理:根据输入参数执行特定操作。

实践建议

  1. 确保工具定义清晰:每个工具的功能描述应明确,确保可以轻松理解和调用。
  2. 维护工具的一致性:确保工具参数和返回值符合预期,以便模型正确调用。
  3. 监控工具调用效率:观察工具调用的频率和响应速度,以优化流程。

如果遇到问题欢迎在评论区交流。

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值