实现流工具调用的示例及解析

在现代AI应用中,流式处理是一个关键技术,通过允许数据逐步处理,它提高了系统的响应速度和资源使用效率。在本篇文章中,我们将重点介绍如何在流式上下文中调用工具,以实现动态数据处理。

技术背景介绍

流式调用工具使得系统能够在接收数据的同时进行处理,而不是等待所有数据到齐后再进行处理。这种方法特别适用于需要实时反应的场景,比如在线聊天机器人系统。在这种系统中,工具调用通常是异步的,允许系统连续处理输入数据并生成响应。

核心原理解析

在流式处理的上下文中,工具调用通过消息块(message chunk)进行传递并处理。每个消息块都可能包含工具调用块(ToolCallChunk),这些块包含了工具名称、参数以及工具调用的ID等信息。由于信息可能被分割到多个块中,这些字段都是可选的,并可能在不同的块中被逐步填充。

AI消息块(AIMessageChunk)继承自父消息类,并包含工具调用块以及解析的工具调用信息。这些信息帮助我们从分块的数据中重建完整的工具调用。

代码实现演示

下面我们来展示如何使用 langchain 库进行工具调用,并流式处理这些调用。

import os
from getpass import getpass
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI

# 定义工具函数
@tool
def add(a: int, b: int) -> int:
    """Adds a and b."""
    return a + b

@tool
def multiply(a: int, b: int) -> int:
    """Multiplies a and b."""
    return a * b

tools = [add, multiply]

# 配置OpenAI API
os.environ["OPENAI_API_KEY"] = getpass()  # 安全获取API key

# 初始化OpenAI的聊天模型,绑定工具
llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
llm_with_tools = llm.bind_tools(tools)

# 定义查询并流式处理输出
query = "What is 3 * 12? Also, what is 11 + 49?"

async for chunk in llm_with_tools.astream(query):
    print(chunk.tool_call_chunks)

# 累积工具调用块
first = True
async for chunk in llm_with_tools.astream(query):
    if first:
        gathered = chunk
        first = False
    else:
        gathered = gathered + chunk
    
    print(gathered.tool_call_chunks)
    print(gathered.tool_calls)

代码说明:

  • 通过使用含有 @tool 装饰器的方法定义了工具函数 addmultiply
  • 使用 ChatOpenAI 绑定工具后,可以在流式处理查询时调用这些工具。
  • astream() 方法中,可以逐块处理消息。

应用场景分析

流式工具调用非常适用于需要实时响应的系统,如语音识别、实时翻译、在线客服等场景。在这些应用中,流式处理能够快速响应用户请求,并提供动态的输出。

实践建议

在实现流式处理时,应注意以下几点:

  • 确保工具调用的分段数据能够被正确聚合。
  • 考虑系统的实时响应能力和资源消耗平衡。
  • 使用可靠的API服务,确保系统的稳定性和可扩展性。

结束语:

如果遇到问题欢迎在评论区交流。
—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值