频域结合PINN登上Nature,预测误差爆降100倍!

2025深度学习发论文&模型涨点之——FD-PINN

频域PINN的核心思想是将偏微分方程从时域或空间域转换到频域。通过离散傅里叶变换(DFT),可以将复杂的偏微分方程转化为频域中的低维系统,从而降低方程的维度和求解难度。例如,在傅里叶域物理信息神经网络(FD-PINN)中,通过对偏微分方程在周期性空间维度进行离散傅里叶变换,将其转化为频域中维度更低的微分方程组来约束神经网络。

我整理了一些FD-PINN【论文+代码】合集

论文精选

论文1:

[Nature子刊] SRS-Net: a universal framework for solving stimulated Raman scattering in nonlinear fiber-optic systems by physics-informed deep learning

SRS-Net:基于物理信息深度学习的非线性光纤系统中受激拉曼散射的通用求解框架

方法

物理信息神经网络(PINNs):结合神经网络的高效自动微分能力和强大表示能力,以及受激拉曼散射(SRS)物理规律的正则化,用于解决SRS的正问题、逆问题以及组合问题。

自动微分(AD):利用AD在SRS-Net中实现物理规律的正则化,允许直接识别物理参数和优化输入功率。

损失函数设计:通过最小化数据项和物理规律正则化项的均方误差(MSE)来训练SRS-Net。

适应性训练策略:在处理双向传输问题时,采用分阶段的权重调整策略,逐步优化网络参数。

图片

创新点

通用性:SRS-Net能够同时解决正问题(如功率演化预测)和逆问题(如光纤参数识别和泵浦功率优化),无需为不同场景设计特定的解决方案。

计算效率提升:在C + L波段的光纤传输实验中,SRS-Net的预测速度比传统数值方法快两个数量级(约100倍)。

优化性能提升:在泵浦功率优化任务中,SRS-Net的收敛速度比传统的遗传算法(GA)快约2.5倍,且优化结果更接近目标光谱。

参数识别精度提升:在光纤参数识别任务中,SRS-Net的均方根误差(RMSE)低于0.2 dB,显著优于传统的迭代搜索方法。

图片

论文2:

3DMeshNet: A Three-Dimensional Differential Neural Network for Structured Mesh Generation

3DMeshNet:用于结构化网格生成的三维微分神经网络

方法

物理信息神经网络(PINNs):将网格生成相关的微分方程嵌入到神经网络的损失函数中,将网格生成任务转化为无监督优化问题。

有限差分方法(FD):通过有限差分方法高效计算导数,加速训练过程。

损失函数重加权:通过多任务学习策略和表面点加权方案,动态调整损失函数中不同任务的权重。

梯度投影:通过梯度投影技术解决不同损失项之间的梯度冲突,提高模型的收敛稳定性。

图片

创新点

训练时间显著减少:与传统的PINNs相比,3DMeshNet的训练时间减少了85%,显著提高了训练效率。

网格质量提升:在多个二维和三维几何形状的实验中,3DMeshNet生成的网格质量优于现有方法,最小内角和最大内角的指标表现更好,表明网格的正交性更高。

网格开销降低:与传统的TFI方法相比,3DMeshNet的网格开销降低了4到8倍,显著减少了网格生成的计算成本。

复杂几何形状的适应性:3DMeshNet在处理复杂几何形状时表现出色,能够生成高质量的网格,而传统方法在这些情况下可能会产生扭曲或不规则的网格。

图片

论文3:

Microseismic source imaging using physics-informed neural networks with hard constraints

基于硬约束的物理信息神经网络的微地震源成像

方法

物理信息神经网络(PINNs):使用PINNs表示多频率波场,并通过逆傅里叶变换提取源图像。

硬约束:通过修改频率域波场的表示形式,使边界条件(表面测量数据)自然满足,避免了在PINNs中平衡数据损失和偏微分方程(PDE)损失的复杂性。

因果性损失:提出基于深度的因果性损失实现,以增强PINNs的收敛性。

数据拟合:使用小的多层感知机(MLP)拟合表面观测数据,以便在PDE拟合中使用。

图片

创新点

硬约束的引入:首次在微地震源成像中引入硬约束,避免了在训练过程中平衡数据损失和PDE损失的复杂性,显著提高了训练的稳定性和准确性。

因果性损失的提出:通过深度方向的因果性约束,加速了网络的收敛速度,提高了源成像的精度。在数值实验中,使用因果性损失的PINNs比不使用因果性损失的PINNs在训练速度上提高了约2倍。

稀疏数据的有效处理:该方法能够在非常稀疏的记录下生成聚焦的源图像,即使在只有20个随机接收器的情况下,也能准确成像多源事件,展现了在被动监测场景中的强大潜力。

噪声鲁棒性:与时间反转方法相比,该方法生成的源图像更少噪声,具有更好的噪声鲁棒性。在实际的水力压裂监测数据中,该方法正确成像源位置,且伪影更少。

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值