2025深度学习发论文&模型涨点之——频域+PINN
PINN作为一种深度学习方法,通过将物理定律嵌入神经网络的训练过程,能够在仅有少量数据的情况下学习物理系统的解,其核心在于利用已知的物理定律来约束神经网络的训练,从而提高模型的准确性和泛化能力。而频域分析则是一种将信号从时间域转换到频率域的方法,通过傅里叶变换实现,它在处理具有周期性或振荡性行为的系统时表现出色,能够帮助我们更好地理解系统的动态行为,提取关键特征,并进行有效的建模和预测。
我整理了一些频域+PINN【论文+代码】合集
论文精选
论文1:
[Nature子刊] SRS-Net: a universal framework for solving stimulated Raman scattering in nonlinear fiber-optic systems by physics-informed deep learning
SRS-Net:一种用于解决非线性光纤系统中受激拉曼散射问题的通用物理信息深度学习框架
方法
物理信息神经网络(PINN):结合神经网络的高效自动微分和强大的表示能力,以及SRS物理定律的正则化。
自动微分(AD):利用AD技术在训练过程中同时满足SRS PDE和测量数据的约束。
双向传输处理:通过物理定律正则化,自然地处理双向传输问题,无需转换为单向传输。
参数优化:将输入泵功率和物理参数作为变量,通过AD直接优化输入功率和识别物理参数。
创新点
通用解决方案:提出了一种通用的SRS解决方案框架,能够同时处理正向和逆向问题,无需为不同场景设计特定的解决方案。
计算效率提升:通过避免显式步长或网格生成,SRS-Net在多通道传输中的计算速度比传统方法快两个数量级。
高精度预测:在实验验证中,SRS-Net在功率演化预测中的最大误差低于0.1dB,显著优于传统方法。
参数识别能力:在光纤参数识别任务中,SRS-Net的收敛速度比传统方法(如遗传算法)快2.5倍,且误差降低了约30%。
论文2:
Fourier Domain Physics Informed Neural Network
傅里叶域物理信息神经网络
方法
连续时间傅里叶域物理信息神经网络(CFD-PINN):通过将物理信息嵌入到傅里叶域,预测广义脉冲传播方程的解。
离散时间傅里叶域物理信息神经网络(DFD-PINN):结合隐式龙格-库塔方法(RKM),从空间分离的测量点恢复延迟响应物理。
傅里叶变换:在傅里叶域处理卷积积分,避免直接求解偏积分微分方程(PIDE)。
自动微分:利用自动微分技术计算空间和时间导数,结合物理定律进行训练。
创新点
首次将PINN应用于傅里叶域:解决了PIDE的求解问题,适用于超快非线性光学中的复杂动力学。
显著提高信噪比(SNR):在低信噪比条件下,CFD-PINN能够显著提高输入数据的SNR,提升超过两个数量级。
高效处理稀疏数据:DFD-PINN能够从稀疏的测量数据中恢复隐藏的连续物理过程,适用于实验环境中的高精度预测。
鲁棒性提升:FD-PINN在预测和发现算法中表现出对噪声的鲁棒性,预测误差在高功率区域仅略有增加。
论文3:
Microseismic source imaging using physics-informed neural networks with hard constraints
使用具有硬约束的物理信息神经网络进行微地震源成像
方法
物理信息神经网络(PINN):利用PINN表示频率域波场,并通过逆傅里叶变换提取源图像。
硬约束:将边界条件直接嵌入到波场表示中,避免了在PINN中平衡数据和PDE损失的困难。
因果性损失:引入因果性损失,提高了PINN在深度方向上的收敛速度和精度。
数据拟合与PDE拟合:通过数据拟合网络和PDE拟合网络分别处理数据和物理定律。
创新点
直接源成像框架:能够在非常稀疏的记录条件下生成聚焦的源图像。
硬约束的引入:通过硬约束将边界条件直接嵌入到波场表示中,避免了数据和PDE损失之间的平衡问题。
因果性损失的引入:提高了PINN在深度方向上的收敛速度和精度,测试结果显示收敛速度提升了约50%。
实验验证:在合成数据和实际的水力压裂监测数据上验证了该方法的有效性,源成像结果比传统方法更清晰、噪声更少。