
特征融合
文章平均质量分 84
AI是草卖哩
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深度学习不容错过的论文方向:多模态特征融合!
例如,在一个视频会议场景中,我们可以通过视频看到参会者的表情和动作(视觉模态),通过音频听到他们的声音(听觉模态),甚至可以通过文字记录了解会议内容(文本模态)。Transformer融合机制:提出的基于Transformer的融合机制能够处理任意维度、大小和序列长度的SSL特征,相比传统方法,模型在四个数据集上的平均准确率提升了5%以上。视觉提示理解:通过视觉提示注入策略,模型在视觉提示理解任务上的性能显著提升,例如在RefCOCOg数据集上,METEOR分数提升了1.4。原创 2025-08-08 11:03:38 · 1047 阅读 · 0 评论 -
超越传统!自适应特征融合改改直接发A会
性能提升:RT-DETR-R50在准确率上比DINO-Deformable-DETR-R50提升2.2% AP(53.1% vs 50.9%),速度提升约21倍(108 FPS vs 5 FPS)。实时性能:RT-DETR-R50在COCO val2017上达到53.1% AP,速度为108 FPS,显著优于YOLOv8-L(52.9% AP,52 FPS)。特征融合:通过特征融合技术,FFTAT在DomainNet数据集上平均准确率达到51.9%,显著优于基线模型(38.1%)。原创 2025-07-16 11:50:16 · 867 阅读 · 0 评论