
PINN
文章平均质量分 86
AI是草卖哩
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
预测误差爆降100倍!频域+PINN简直杀疯了
PINN作为一种深度学习方法,通过将物理定律嵌入神经网络的训练过程,能够在仅有少量数据的情况下学习物理系统的解,其核心在于利用已知的物理定律来约束神经网络的训练,从而提高模型的准确性和泛化能力。而频域分析则是一种将信号从时间域转换到频率域的方法,通过傅里叶变换实现,它在处理具有周期性或振荡性行为的系统时表现出色,能够帮助我们更好地理解系统的动态行为,提取关键特征,并进行有效的建模和预测。高效处理稀疏数据:DFD-PINN能够从稀疏的测量数据中恢复隐藏的连续物理过程,适用于实验环境中的高精度预测。原创 2025-08-14 11:18:26 · 976 阅读 · 0 评论 -
PINN+贝叶斯:深度学习中的魔改新思路
PINN通过将物理定律(如偏微分方程PDEs)嵌入神经网络的损失函数中,使得模型能够利用已知的物理规律来指导学习过程,从而在数据有限或噪声较多的情况下实现更高的准确性。贝叶斯物理信息极限学习机(BPIELM):结合物理信息极限学习机(PIELM)和贝叶斯方法,通过在输出层引入先验概率分布,并利用贝叶斯方法估计参数的后验分布。贝叶斯物理信息神经网络(B-PINNs):结合贝叶斯神经网络(BNN)和物理信息神经网络(PINN),通过贝叶斯框架量化噪声数据中的不确定性。原创 2025-07-30 11:46:52 · 1163 阅读 · 0 评论 -
PINN最近杀疯了,与LSTM完美融合!!
将两者结合,可以利用PINN的物理约束确保模型的预测与物理定律一致,同时借助LSTM的时间序列建模能力,捕捉动态系统的复杂时间依赖性。显式时域方法(ETDM):提出了一种基于ETDM的物理信息神经网络(PINN),称为E-PINN,用于非线性结构的动态响应预测。物理信息LSTM(LSTM-PINN):在LSTM网络中加入物理信息,通过损失函数中的物理约束提高模型对物理过程的预测能力。物理信息整合:通过在损失函数中加入物理信息,模型的泛化能力增强,即使在数据量较少的情况下也能有效学习物理过程。原创 2025-07-25 11:40:58 · 828 阅读 · 0 评论