Python打卡训练营Day60

DAY 60 复习日

  梳理之前的内容,建立自己的思维导图,课程最开始提供了思维导图,但是时间关系可能得未来补全(这个工作量也挺大),大家尽可能自己在一个白板上面来自己回忆回忆,在对着讲义和代码进行补充。

## 一、基础准备
├── 1.1 环境配置
│   ├── PyTorch/CUDA安装
│   ├── GPU性能查看(`nvidia-smi`)
│    └── 随机种子设置
├── 1.2 项目规范
│   ├── 文件拆分(Notebook vs 模块化)
│   ├── 命名规范
│   └── 类型注解
└── 1.3 文档阅读
    ├── 官方文档检索(GitHub/官网)
    ├── 版本匹配原则
    └── 类方法三要素(参数/返回值/调用)

## 二、神经网络基础
├── 2.1 模型构建
│   ├── `nn.Module`继承
│   ├── 层定义(Linear/Conv2d)
│    └── 前向传播(`forward`)
├── 2.2 训练流程
│   ├── 数据预处理
│   │   ├── 归一化
│   │   └── 张量类型转换(分类→long,回归→float)
│   ├── 损失函数(CrossEntropy/MSE)
│   ├── 优化器(SGD/Adam)
│    └── 训练循环
└── 2.3 模型管理
    ├── 保存与加载
    │   ├── 仅权重(`.pth`)
    │   └── Checkpoint
     └── 早停策略(Val Loss监控)

## 三、计算机视觉
├── 3.1 数据加载
│   ├── `Dataset`类(`__getitem__`/`__len__`)
│    └── `DataLoader`(batch/shuffle)
├── 3.2 CNN架构
│   ├── 经典网络
│   │   ├── LeNet → ResNet
│   │   └── Inception模块
│   ├── 卷积计算(特征图/感受野)
│   └── BatchNorm/Dropout
├── 3.3 注意力机制
│   ├── SE(通道注意力)
│   ├── CBAM(通道+空间)
│   └── 模块插入策略
└── 3.4 可视化工具
    ├── Grad-CAM(Hook函数)
    ├── 特征图热力图
    └── TensorBoard(训练监控)

## 四、时序预测
├── 4.1 数据检验
│   ├── 平稳性(ADF检验)
│   ├── 白噪声(Ljung-Box)
│   └── 季节性分解
├── 4.2 经典模型
│   ├── ARIMA(p,d,q)
│   │   ├── 差分阶数确定
│   │    └── ACF/PACF定阶
│   └── SARIMA(季节性扩展)
└── 4.3 多变量处理
    ├── 滑动窗口构造
    └── VAR/SARIMAX

## 五、高级技巧
├── 5.1 调参指南
│   ├── 超参数分类(架构/优化/正则化)
│    └── 调参顺序(学习率→层宽→正则化)
├── 5.2 生成模型
│    └── GAN(生成器/判别器)
└── 5.3 预训练模型
    ├── 微调策略(差异化LR)
    └── ResNet结构解析

## 六、实战作业流
└── 6.1 标准流程
    ├── 数据探索 → 预处理 → 建模
    ├── 训练 → 验证 → 早停
    └── 可视化 → 推理部署

时间好快。day60 over!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值