DAY 60 复习日
梳理之前的内容,建立自己的思维导图,课程最开始提供了思维导图,但是时间关系可能得未来补全(这个工作量也挺大),大家尽可能自己在一个白板上面来自己回忆回忆,在对着讲义和代码进行补充。
## 一、基础准备
├── 1.1 环境配置
│ ├── PyTorch/CUDA安装
│ ├── GPU性能查看(`nvidia-smi`)
│ └── 随机种子设置
├── 1.2 项目规范
│ ├── 文件拆分(Notebook vs 模块化)
│ ├── 命名规范
│ └── 类型注解
└── 1.3 文档阅读
├── 官方文档检索(GitHub/官网)
├── 版本匹配原则
└── 类方法三要素(参数/返回值/调用)
## 二、神经网络基础
├── 2.1 模型构建
│ ├── `nn.Module`继承
│ ├── 层定义(Linear/Conv2d)
│ └── 前向传播(`forward`)
├── 2.2 训练流程
│ ├── 数据预处理
│ │ ├── 归一化
│ │ └── 张量类型转换(分类→long,回归→float)
│ ├── 损失函数(CrossEntropy/MSE)
│ ├── 优化器(SGD/Adam)
│ └── 训练循环
└── 2.3 模型管理
├── 保存与加载
│ ├── 仅权重(`.pth`)
│ └── Checkpoint
└── 早停策略(Val Loss监控)
## 三、计算机视觉
├── 3.1 数据加载
│ ├── `Dataset`类(`__getitem__`/`__len__`)
│ └── `DataLoader`(batch/shuffle)
├── 3.2 CNN架构
│ ├── 经典网络
│ │ ├── LeNet → ResNet
│ │ └── Inception模块
│ ├── 卷积计算(特征图/感受野)
│ └── BatchNorm/Dropout
├── 3.3 注意力机制
│ ├── SE(通道注意力)
│ ├── CBAM(通道+空间)
│ └── 模块插入策略
└── 3.4 可视化工具
├── Grad-CAM(Hook函数)
├── 特征图热力图
└── TensorBoard(训练监控)
## 四、时序预测
├── 4.1 数据检验
│ ├── 平稳性(ADF检验)
│ ├── 白噪声(Ljung-Box)
│ └── 季节性分解
├── 4.2 经典模型
│ ├── ARIMA(p,d,q)
│ │ ├── 差分阶数确定
│ │ └── ACF/PACF定阶
│ └── SARIMA(季节性扩展)
└── 4.3 多变量处理
├── 滑动窗口构造
└── VAR/SARIMAX
## 五、高级技巧
├── 5.1 调参指南
│ ├── 超参数分类(架构/优化/正则化)
│ └── 调参顺序(学习率→层宽→正则化)
├── 5.2 生成模型
│ └── GAN(生成器/判别器)
└── 5.3 预训练模型
├── 微调策略(差异化LR)
└── ResNet结构解析
## 六、实战作业流
└── 6.1 标准流程
├── 数据探索 → 预处理 → 建模
├── 训练 → 验证 → 早停
└── 可视化 → 推理部署
时间好快。day60 over!