自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

软件工程实践的博客

聚焦软件工程全流程,分享需求分析、系统设计、编码实现、测试维护等最佳实践,探讨敏捷开发、DevOps等现代软件工程方法,

  • 博客(1383)
  • 收藏
  • 关注

原创 企业级AI应用提示工程与大模型微调:提示工程架构师的协同优化实践

在企业级AI应用中,提示工程(用自然语言“指挥”大模型)和大模型微调(用企业数据“训练”大模型)是两大核心优化手段,但二者并非孤立存在——提示是“即时调整的菜谱”,微调是“长期训练的厨师”,只有协同工作才能解决企业场景中的“复杂需求+高性价比”难题。本文将通过“厨师炒菜”的生活化比喻,拆解两者的技术逻辑,结合企业客服、零售推荐等真实案例,展示“提示工程架构设计+针对性微调”的协同流程,并给出可落地的代码框架与避坑指南。企业级AI的成功,本质是“用提示解决灵活性问题,用微调解决专业性问题”的双轮驱动。准确性。

2025-08-07 11:57:02 60

原创 提示工程架构师成长攻略:提示工程里程碑规划与核心竞争力构建技巧

随着大语言模型(LLM)在企业级应用中的深化,提示工程(Prompt Engineering)已从“调参技巧”升级为“系统级架构能力”。很多开发者能写出有效的单轮 Prompt,但面对复杂多轮对话、大规模检索增强生成(RAG)、跨系统工具调用等场景时,往往因缺乏体系化架构思维而陷入瓶颈。本文将为你提供一份可落地的提示工程架构师成长 roadmap,分阶段规划里程碑,并拆解四大核心竞争力的构建方法。从“Prompt 调优者”到“系统设计者”的能力跃迁路径;

2025-08-07 10:09:25 188

原创 探索AI原生应用领域中Llama的无限可能

本文聚焦“AI原生应用”这一新兴领域,重点分析Llama大模型(Llama 1/2/3系列)在其中的技术价值与应用潜力。我们将覆盖Llama的核心能力、与传统应用的差异、典型场景落地方法,以及未来发展趋势。用“智能餐厅”故事引出AI原生应用与Llama的关系拆解Llama的核心能力与AI原生应用的匹配逻辑用Python代码演示Llama如何构建智能客服覆盖教育、医疗等4大高频场景展望多模态、边缘部署等未来趋势AI原生应用:用大模型的“智能”替代传统代码的“规则”,动态适配用户需求;

2025-08-07 03:40:28 348

原创 模型量化在AI推理加速中的关键作用

随着GPT-4、Stable Diffusion等大模型的普及,AI模型的参数量已从百万级飙升至千亿级(如GPT-3有1750亿参数)。但在手机、摄像头、智能手表等"小设备"上运行这些"大模型"时,就像让大象钻独木桥——计算慢、耗电快、占内存。本文将聚焦解决这一矛盾的核心技术:模型量化,覆盖其原理、实现方法、实战案例及应用价值。

2025-08-07 02:18:32 169

原创 AI原生应用在视频生成领域的10大应用场景

你是否经历过:想拍一条短视频却没有设备?想做广告但预算不够?想给孩子做成长纪念视频却不会剪辑?过去这些难题,现在AI原生视频生成应用(从设计之初就依赖AI能力的视频工具)正在一一破解。本文将聚焦无需专业设备、无需剪辑技能、按需生成高质量视频的10大场景,覆盖个人、企业、教育、文化等多个领域。我们将先通过一个“外卖小哥的逆袭”故事引出AI视频生成的魔力,再拆解核心概念,最后详细解析10大场景——每个场景都会告诉你“传统痛点+AI解决方案+真实案例”,让你看完就能想:“这技术我也能用!

2025-08-07 00:56:33 635

原创 提示工程中的错误分析:架构师定位问题的新框架

当你用ChatGPT生成的客户邮件语气生硬,用Claude写的报告跑题,用LangChain搭建的对话系统答非所问时——你可能正在经历提示工程的「黑盒困境」:明明改了提示,结果却更糟;明明「按教程来」,问题却反复出现。传统的提示优化靠「试错法」:加几个词、换个句式、加示例……但这种「碰运气」的方式,本质是把提示当成「咒语」,而非工程化的输入系统。本文提出**「5层错误分析框架」**——从「用户意图」到「输出验证」,帮架构师像拆解软件bug一样,系统定位提示失效的根源。

2025-08-06 23:19:22 526

原创 从传统到AI原生:语音识别技术演进全解析

我们的目的是带着大家从头到尾了解语音识别技术是怎么从传统方法一步步发展到现在的AI原生阶段的。范围就涵盖了语音识别技术在这整个发展过程中的各种关键知识,像传统方法是怎么工作的,AI原生又有啥特别的地方,它们之间是怎么过渡的等等。接下来我们会先讲讲语音识别的核心概念,把传统和AI原生的语音识别掰开了、揉碎了给大家讲清楚。然后说说它们背后的算法原理、数学模型。再通过一个实际的项目案例,看看代码是怎么写的,有什么用。接着介绍语音识别在生活里的各种应用场景,推荐一些好用的工具和资源。

2025-08-06 21:47:42 205

原创 自然语言处理在AI原生应用中的知识问答系统

本文旨在系统性地介绍如何利用自然语言处理技术构建高效的AI原生知识问答系统。我们将覆盖从基础概念到高级应用的完整知识体系,包括系统架构设计、核心算法实现、性能优化策略等关键内容。核心概念与系统架构关键技术实现与算法原理实际项目案例与代码实现应用场景与未来发展趋势自然语言处理(NLP): 计算机理解、解释和生成人类语言的技术知识问答系统: 能够理解自然语言问题并从知识库中检索准确答案的AI系统AI原生应用: 以AI为核心设计理念构建的应用程序,AI能力是其基础功能而非附加特性核心概念回顾。

2025-08-06 20:08:50 213

原创 内容审核中的长尾问题:小概率违规内容检测方案

本文聚焦内容审核中的“长尾难题”:解释为何小概率违规内容难以被检测,介绍学术界和工业界的前沿解决方案(如小样本学习、主动学习),并提供可落地的技术方案。适合对内容安全、机器学习应用感兴趣的开发者、安全工程师阅读。本文从“生活中的长尾现象”切入,解释技术概念→分析长尾问题的成因→拆解核心技术方案→通过代码实战演示→最后展望未来趋势。全程用“超市进货”“钓鱼”等比喻降低理解门槛。长尾问题:数据分布中,少数高频类别(主类)占大部分样本,大量低频类别(长尾类)总占比小但数量多(类似“长尾曲线”)。

2025-08-06 18:32:47 345

原创 增量学习在AI原生边缘计算应用中的实践案例

随着5G与物联网的普及,全球边缘设备数量已突破300亿台(IDC 2023数据)。网络延迟:自动驾驶需要10ms内响应,云端往返可能超过100ms数据隐私:医疗设备的影像数据不能轻易上传成本压力:每天上传1TB数据的流量费高达数千元本文将聚焦"增量学习"这一关键技术,讲解如何让边缘设备在本地持续学习新数据,实现"边用边进化",覆盖技术原理、工程实践与行业案例。用奶茶店升级案例引出增量学习与边缘计算的关系拆解核心概念的技术本质与协同逻辑用Python代码演示增量学习关键算法。

2025-08-06 17:10:47 395

原创 AI原生应用领域多轮对话在游戏中的创新玩法设计

本文旨在探索AI原生应用领域中多轮对话技术在游戏设计中的创新应用方式。我们将重点讨论如何利用现代AI对话技术为游戏NPC(非玩家角色)创造更自然、更智能的交互体验,以及这些技术如何催生全新的游戏玩法。首先介绍多轮对话的基本概念和在游戏中的应用价值深入分析多轮对话的核心技术原理探讨多种创新玩法设计模式提供实际代码实现示例讨论未来发展趋势和挑战AI原生应用:以人工智能为核心设计理念构建的应用程序,AI不是附加功能而是基础架构多轮对话:能够理解上下文、维持对话状态的连续交互系统对话树。

2025-08-06 15:44:16 159

原创 API 文档:软件工程质量的重要保障

痛点描述文档的解决方式理解不一致前端认为“user_id是字符串”,后端认为“user_id是整数”明确参数类型、格式、约束文档过时API新增了email参数,但文档未更新,导致调用失败活文档(自动同步代码)使用困难开发人员不知道“如何调用支付API”,需要读大量代码提供指南文档(快速开始)、示例文档(代码片段)责任不清服务提供者认为“参数校验是消费者的责任”,消费者认为“是提供者的责任”明确前置条件(Precondition)、后置条件(Postcondition)

2025-08-06 14:06:44 591

原创 提示工程架构设计从0到落地:小型团队也能玩转的架构设计方案

我是张三,资深软件工程师,专注于提示工程和小型团队技术实践。曾在初创公司负责AI客服机器人的开发,用本文的架构帮助团队将客服效率提升了3倍。欢迎关注我的公众号“技术随想录”,分享更多小型团队的技术实践。

2025-08-06 12:28:58 334

原创 软件工程领域:GitHub 贡献者指南解读

问题类型具体表现指南的解决方式代码质量一致性变量命名不统一、注释缺失制定代码规范(如Prettier/ESLint配置)流程不明确不知道如何提交PR、如何处理冲突定义标准化流程(如Fork-Branch-PR流程)沟通成本高PR描述模糊、Issue重复报告提供模板(如PR描述模板、Issue模板)社区治理混乱贡献者行为不当、维护者权责不清制定行为准则(如Contributor Covenant)

2025-08-06 11:06:54 588

原创 AI原生财务分析系统的开发指南

传统财务分析系统像“老式计算器”:依赖人工规则(如固定比率公式)、处理结构化数据(如Excel表格)、仅能做历史统计(如去年收入对比)。而AI原生系统则是“智能财务管家”,能自动解读非结构化财报(如董事长致辞)、实时分析高频交易数据(如每分钟股价波动)、甚至预测未来3个月现金流缺口。本文将覆盖从需求分析到系统部署的全流程,重点解决“如何让AI真正驱动财务决策”的核心问题。本文将按“概念→原理→实战→应用”的逻辑展开:先通过故事理解AI原生财务分析的核心;再拆解技术架构(数据、模型、交互);

2025-08-06 09:29:43 413

原创 AI原生应用领域提示工程的最佳应用实践案例

本文聚焦“AI原生应用”这一特定场景(区别于传统软件),重点讲解提示工程在实际业务中的落地方法。我们将覆盖内容生成、智能客服、代码辅助、教育场景、营销文案5大高频领域,提供可直接复用的提示模板与调优策略。本文从“概念→原理→案例→工具”层层递进,先通过生活案例理解提示工程的本质,再拆解5大核心场景的实战方法,最后总结可复用的“黄金公式”。通过以上案例,我们可以总结出不同场景下的提示设计重点场景类型提示设计重点关键技巧内容生成明确风格/关键词/长度示例引导+强制包含关键词智能客服。

2025-08-06 03:06:03 493

原创 AI原生应用领域知识抽取的区块链融合应用

在AI时代,我们每天产生的数据像“信息洪水”(仅2023年全球数据量就达100ZB),但这些数据大多是混乱的“原始矿石”(非结构化文本、语音)。AI原生应用(比如智能客服、医疗诊断系统)需要从这些矿石中提炼“黄金知识”(结构化信息),这就是“知识抽取”的任务。但问题来了:提炼出的黄金怎么保证不被篡改?怎么证明它来自可靠的“矿山”?这时候,区块链这位“可信管家”就登场了。本文将覆盖知识抽取与区块链融合的核心原理、技术实现和真实应用。

2025-08-06 01:34:13 196

原创 AI原生应用领域:GPT与传统应用的对比分析

在当今科技飞速发展的时代,AI技术尤其是以GPT为代表的大语言模型正深刻改变着我们的生活和工作方式。本文章的目的就是详细对比GPT和传统应用,明确它们各自的特点和适用场景。范围涵盖核心概念、算法原理、应用场景等多个方面,让大家能清晰地看到两者的差异和联系。文章首先会介绍相关的核心概念,用通俗易懂的语言解释GPT和传统应用是什么。接着阐述它们的核心算法原理和操作步骤,还会结合数学模型和公式进行详细说明。然后通过项目实战案例来展示两者在实际中的应用。

2025-08-06 00:12:15 377

原创 AI原生领域视频生成的发展现状

我们的目的是全面了解AI原生领域视频生成现在发展到什么程度啦。就像我们去探索一个神秘的地方,想知道那里有什么好玩的东西、住着哪些居民一样,我们要看看AI原生视频生成这个领域里有哪些厉害的技术、应用在哪些地方,还有未来可能会怎么发展。范围呢,就是围绕着AI原生视频生成相关的技术、应用、发展趋势等方面。接下来我们会像搭积木一样,一块一块地构建对AI原生领域视频生成的认识。先从核心概念入手,了解这到底是怎么回事;然后学习它背后的算法原理和数学模型;再通过实际的项目实战看看代码是怎么写的;

2025-08-05 22:50:18 689

原创 AI原生应用实战:构建智能人机协作平台

在“所有应用都值得用AI重做一遍”的浪潮中,传统协作工具(如钉钉、飞书)的局限性逐渐显现:它们本质是“电子化的线下流程”,而真正的智能协作需要让AI像“隐形同事”一样主动理解需求、补全信息、推动进度。本文聚焦“AI原生应用”的核心特征(从设计之初就深度融合AI能力),以“智能人机协作平台”为实战对象,覆盖从概念理解到代码实现的全流程。本文从“生活场景引入”→“核心概念解释”→“技术原理拆解”→“实战代码演示”→“应用场景展望”层层递进,最后通过思考题引导读者将知识落地。

2025-08-05 21:18:13 804

原创 跨语言AI应用开发:解决文化差异的技术方案

在当今全球化的时代,不同国家和地区的人们交流日益频繁。跨语言AI应用开发就像是一座沟通不同语言和文化的桥梁,其目的是让AI系统能够在多种语言环境下准确、有效地工作,消除语言和文化带来的障碍。我们的范围涵盖了从简单的语言翻译应用到复杂的跨文化智能交互系统等各种跨语言AI应用。本文将按照以下结构展开:首先介绍相关的核心概念,让大家对跨语言AI开发和文化差异有清晰的认识;接着讲解核心算法原理和具体操作步骤,以及相关的数学模型;然后通过项目实战,展示如何在实际中实现跨语言AI应用;

2025-08-05 19:47:06 867

原创 多轮对话提示策略:架构师应对复杂场景的前沿技巧

我是张三,资深软件工程师,专注于大模型应用架构设计,曾主导过电商、医疗等领域的对话系统开发。欢迎关注我的公众号“AI架构师笔记”,分享更多大模型应用技巧。

2025-08-05 18:14:14 441

原创 AI原生应用开发:跨语言理解的技术选型

想象你要开一家“全球超市”,顾客可能用中文问“苹果多少钱”,用西班牙语问“香蕉有货吗”,用阿拉伯语问“牛奶的保质期”——你的AI系统需要像“全球通客服”一样,直接理解不同语言的需求。本文聚焦AI原生应用中跨语言理解的技术选型,覆盖从基础概念到实战落地的全流程,帮助开发者根据业务场景(如电商、教育、医疗)选择最适合的技术方案。本文将按“概念→原理→选型→实战”的逻辑展开:先通过“全球超市”故事引出核心概念,再对比多语言模型、翻译模型等方案的优缺点,最后用代码实战演示如何为智能客服系统选型并落地。AI原生应用。

2025-08-05 16:41:36 511

原创 AI原生应用与链式思考的融合之道

随着GPT-4、Claude 3等大语言模型(LLM)的爆发式发展,AI应用正在经历从"工具辅助"到"原生驱动"的范式转移。传统应用是"在现有功能中加AI插件",而AI原生应用则是"以AI为核心重新设计整个产品逻辑"。但要让AI真正替代人类完成复杂任务,仅靠"直接输出结果"远远不够——我们需要AI像人类一样"逐步思考"。本文将聚焦"链式思考(CoT)"这一关键技术,解析它如何与AI原生应用深度融合,打造更智能、更可信的下一代AI产品。用"智能小助手的成长故事"引出核心概念。

2025-08-05 13:52:41 808

原创 AI原生应用中的LLM:如何处理长文本输入

随着AI原生应用(如Notion AI、ChatPDF、法律合同分析工具)的普及,用户需求从“短文本交互”转向“长文本深度处理”:律师需要分析500页的合同,学生需要总结100页的论文,客服需要理解用户5000字的问题描述。但主流LLM(如GPT-3.5、Llama 2)的上下文窗口通常只有4k-16k token(约3000-12000汉字),直接处理数万字的长文本会遇到“信息丢失”“计算爆炸”“理解断层”等问题。本文将聚焦LLM处理长文本的核心技术,覆盖原理、算法、实战全流程。

2025-08-05 12:15:30 523

原创 从规则到智能:AI原生应用内容过滤的演进之路

在抖音、小红书、知乎等UGC平台上,每天有超过10亿条内容被发布——从短视频到评论,从笔记到私信。这些内容中可能混杂着暴力、色情、谣言等违规信息,若放任不管,平台将面临监管处罚、用户流失等风险。本文聚焦“内容过滤”这一核心技术,覆盖从传统规则引擎到AI原生系统的全演进路径,帮助开发者、产品经理理解不同阶段技术的适用场景与升级逻辑。用社区管理员的真实故事引出内容过滤需求;分三阶段讲解规则引擎、机器学习、大语言模型的技术原理;提供可运行的Python代码示例,演示各阶段系统的实现;

2025-08-05 10:38:22 708

原创 AI原生应用领域函数调用的商业价值挖掘

随着GPT-4、通义千问等大模型的普及,AI应用正从“传统代码驱动”转向“大模型驱动”的“AI原生”时代。但大模型并非“万能博士”——它擅长理解语言、生成文本,却无法直接获取实时数据(如股票行情)、操作数据库或调用专业工具(如地图API)。此时,“函数调用”(Function Calling)技术应运而生:大模型通过输出结构化指令(如JSON)调用外部函数(API/工具),将“知识推理”与“实际操作”结合,真正成为能解决具体问题的“智能助手”。

2025-08-05 03:58:53 526

原创 原来提示工程架构师这样实现提示缓存机制的高效设计

高命中率:尽可能多的请求命中缓存,减少LLM调用;低内存占用:缓存容量有限,需存储最有价值的提示输出;强一致性:当LLM模型更新或提示模板变化时,缓存应及时失效,避免输出过时信息。这三者之间存在天然矛盾(如高命中率需要更大的缓存容量,而大缓存会增加内存占用),架构师的任务是在具体业务场景中找到最优平衡点。提示缓存是LLM应用优化的“第一站”,其高效设计需要架构师兼顾理论深度与实践经验。

2025-08-05 02:21:44 652

原创 AI原生应用领域:检索增强生成的实践探索

随着ChatGPT、GPT-4等大语言模型(LLM)的普及,AI应用正从“工具辅助”向“原生智能”演进。知识过时:训练数据截止到特定时间(如GPT-4截止2023年4月),无法回答2023年5月后的事件;专业盲区:对垂直领域(如医疗、法律)的最新指南或小众知识覆盖不足;长文本无力:受限于上下文窗口(如GPT-4最多8192 tokens),无法直接处理数万字的文档。

2025-08-05 00:44:32 689

原创 开启AI原生应用个性化定制的新时代

本文旨在探讨AI原生应用个性化定制的最新技术和发展趋势,帮助开发者、产品经理和技术决策者理解这一领域的核心概念、技术原理和实际应用。文章将从核心概念入手,逐步深入探讨技术原理和实现方法,最后通过实际案例和未来展望,全面展示AI原生应用个性化定制的前景。AI原生应用:从设计之初就深度整合人工智能能力的应用程序个性化定制:根据用户独特需求和偏好自动调整应用功能和行为的能力大模型:具有数十亿参数的大型神经网络模型智能代理:能够自主执行任务和决策的AI系统AI原生应用。

2025-08-04 23:20:24 906

原创 自然语言生成技术在AI原生应用中的知识图谱融合

想象一个场景:你问智能助手“秦始皇和汉武帝谁更早?”,它回答“秦始皇是秦朝皇帝,汉武帝是西汉皇帝,具体时间需要查证”——这显然不够好。而更理想的回答是:“秦始皇(前259-前210)统一六国建立秦朝(前221年),比汉武帝(前156-前87)早约70年,所以秦始皇更早。问题来了:传统自然语言生成(NLG)技术能生成流畅句子,但常因缺乏“结构化知识”而出现事实错误、信息模糊。而知识图谱(KG)像机器的“大脑地图”,存储着“秦始皇→朝代→秦朝”“秦朝→时间→前221年”等结构化信息。

2025-08-04 21:52:12 695

原创 多模态交互如何赋能AI原生应用的智能化?

当你对智能音箱说“我有点冷”时,它不仅调高了空调温度,还贴心地推送了暖饮推荐;多模态交互。本文将聚焦“多模态交互”与“AI原生应用”的深度融合,解释前者如何为后者注入“更智能”的灵魂,覆盖技术原理、典型场景、实战方法和未来趋势。本文从“生活故事”切入多模态交互的价值,逐步拆解核心概念(多模态、AI原生应用)、技术原理(跨模态融合)、实战方法(代码示例),最后通过典型场景和未来趋势,呈现多模态交互如何重塑AI应用的智能化边界。多模态交互。

2025-08-04 20:23:39 619

原创 AI原生应用增量学习:数据流处理与模型更新的艺术

随着AI应用从“离线预测”转向“实时决策”(如抖音的实时推荐、支付宝的秒级风控),数据呈现“流速快、变化快”的特点。传统机器学习需等待数据积累到一定量后重新训练模型,导致“模型滞后”——就像用昨天的天气数据预测今天的暴雨。增量学习,覆盖其核心概念、算法原理、实战技巧及未来挑战。本文将按“故事引入→核心概念→算法原理→实战演练→场景落地→未来趋势”的逻辑展开,通过生活案例(如智能咖啡屋)类比技术概念,用Python代码演示增量学习全流程,最后结合真实场景总结经验。

2025-08-04 19:01:42 823

原创 提示工程创新文化建设的“赋能清单”:架构师给团队的权力下放指南

在AI主导的技术革命中,提示工程(Prompt Engineering)已成为连接人类意图与机器能力的“翻译器”——好的Prompt能让AI从“听话的工具”变成“有创造力的伙伴”。但现实中,很多团队的Prompt设计仍依赖少数架构师或专家,导致“创新 bottleneck”:团队成员不敢试、不会试,AI应用始终停留在“能用”而非“好用”的阶段。作为架构师,你需要的不是“亲自搞定所有Prompt”,而是通过权力下放构建一套“赋能体系”

2025-08-04 17:24:31 815

原创 量子计算对提示工程架构的革命性改变,快看

经典模型:用滑动窗口(比如每2000token处理一次),结果会“碎片化”——前面的研究背景和后面的结论完全脱节;量子模型:用量子注意力机制,同时处理15万token的叠加态,所有token的关联都被保留。模型能准确识别“研究背景→问题提出→实验设计→结论”的逻辑链,总结出完整的核心观点。根据IBM 2023年的模拟实验,量子注意力机制处理10万token的速度,是经典注意力的100倍以上,而且信息衰减率从30%降到了5%以下。量子计算不是要“推翻”现有的提示工程,而是要“赋能”它。

2025-08-04 15:52:28 556

原创 突破AI原生应用领域可控性的瓶颈

随着AI从"辅助工具"进化为"核心驱动"(如ChatGPT日均处理超10亿次对话),AI原生应用(从设计之初就以AI为核心的应用)正渗透到教育、医疗、金融等关键领域。但频发的"AI幻觉"(如ChatGPT编造不存在的法律条文)、“偏见输出”(如招聘模型歧视女性)事件,暴露了可控性不足的致命短板。本文将聚焦"如何让AI原生应用更可控"这一核心命题,覆盖技术原理、实战方法与未来趋势。本文将按"问题认知→原理拆解→实战突破→未来展望"的逻辑展开:先通过生活案例理解"可控性"是什么;

2025-08-04 14:20:35 986

原创 领域偏见缓解创新:AI原生应用中的联邦学习应用

在当今的AI世界里,很多AI模型在实际应用中会出现领域偏见的问题。就好比一个小厨师做菜,总是只擅长做某几种口味的菜,对其他口味就不太了解,做出来的菜可能就不能满足所有顾客的需求。我们这篇文章的目的就是要探讨如何利用联邦学习这个神奇的工具,来解决AI原生应用里的领域偏见问题。我们会从基本概念讲起,一直到实际的代码案例和应用场景,让大家全面了解联邦学习在缓解领域偏见方面的作用。我们会先介绍领域偏见和联邦学习的核心概念,就像给大家介绍两个新朋友一样,让大家了解它们是什么。

2025-08-04 12:58:40 799

原创 提示工程自动化测试:架构师的高效方法论

提示工程是连接人类意图与大语言模型(LLM)能力的“翻译层”,其质量直接决定AI系统的可用性。但手动测试Prompt的效率低、覆盖不全、易遗漏边界场景,已成为大规模AI应用的瓶颈。本文从架构师视角,提出**“分层验证+闭环迭代”

2025-08-04 11:36:42 916

原创 逛这个社区就够了!提示工程架构师必备的最佳实践资源库,全是硬货

准确性:如何让模型输出符合事实(如避免“幻觉”)?效率性:如何用最短的提示实现最佳效果(减少token消耗)?扩展性:如何设计可复用的提示框架(支持多任务、多模型)?鲁棒性:如何应对边缘情况(如歧义输入、模型输出偏差)?提示工程架构师的核心能力不是“写出完美的提示”,而是理解模型的逻辑、掌握用户的需求,并设计出能连接两者的系统。随着大语言模型的不断进化,提示工程将从“技巧”升级为“架构”,成为AI应用的核心竞争力。

2025-08-04 10:10:59 302

原创 从单机到分布式:AI原生应用持续学习扩展

本文的目的是帮助大家理解AI原生应用如何从单机环境过渡到分布式环境进行持续学习扩展。范围涵盖了单机和分布式的基本概念、AI原生应用扩展的原理、实现步骤、实际应用场景以及未来的发展方向等内容。首先,我们会介绍单机和分布式等核心概念,并解释它们之间的联系。接着,阐述AI原生应用持续学习扩展的核心算法原理和具体操作步骤,包括数学模型和公式。然后,通过项目实战展示代码实现和详细解读。之后,介绍实际应用场景、推荐相关工具和资源。最后,总结所学内容,提出思考题,并提供常见问题解答和扩展阅读参考资料。单机。

2025-08-04 01:58:25 211

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除