图数据库在推荐系统中的核心算法实现:从理论到工业实践
关键词
图数据库、推荐系统、图神经网络(GNN)、个性化随机游走、动态图建模、拓扑特征提取、工业级推荐架构
摘要
本文系统解析图数据库与推荐系统的技术融合路径,聚焦核心算法实现。通过"理论-架构-实现-应用"四维度展开,覆盖从个性化PageRank到图神经网络(GNN)的全栈算法,结合工业级部署案例,揭示图结构在用户行为建模、跨域关联挖掘中的核心优势。内容包含数学形式化推导、生产级代码示例及Mermaid架构图,适配从算法工程师到业务决策者的多层次需求。
1. 概念基础
1.1 领域背景化
推荐系统的核心矛盾是用户兴趣空间与物品特征空间的高效映射。传统方法(协同过滤、矩阵分解)依赖显式特征或共现统计,难以捕捉隐含的多跳关联(如"用户A→购买商品X→商品X关联商品Y→用户B购买商品Y"的间接兴趣传递)。图数据库通过**节点(实体)-边(关系)-属性(特征)**的三元组模型,天然支持这种复杂关系网络的建模。
1.2 历史轨迹
- 2000s早期:基于邻接矩阵的协同过滤(如ItemCF)隐含使用二分图结构,但依赖关系型数据库存储,无法处理多跳查询。
- 2010s中期:社交网络兴起推动图数据库(Neo4j、JanusGr