- 博客(1092)
- 收藏
- 关注
原创 深度|企业元宇宙战略中的AI伦理:架构师必须考虑的技术规范与风险防控
我们将剖析企业元宇宙中AI伦理的独特性与紧迫性,梳理全球范围内相关的法律法规与伦理框架,重点阐述架构师在设计企业元宇宙AI系统时必须遵循的核心技术规范与原则,并提供一套系统化的风险识别、评估与防控方法论。与面向大众娱乐的消费级元宇宙不同,企业元宇宙(Enterprise Metaverse)是指企业利用VR/AR、区块链、云计算、人工智能、数字孪生等技术构建的,用于支持企业内部协作、对外客户交互、产品研发、培训教育、营销展示、供应链管理等多元化业务场景的沉浸式、交互式、可持续的数字商业空间。
2025-07-24 09:06:58
144
原创 基于多模态的智能需求分析系统架构设计
然而,传统需求分析过程往往深陷于文本的泥潭,依赖人工解读客户的碎片化描述、模糊的口头需求、纷繁复杂的文档以及各种非正式的沟通记录(如邮件、会议纪要、即时通讯消息,甚至是草图和原型)。这些不同模态的数据携带着互补的信息,共同构成了需求的全貌。基于多模态的智能需求分析,则是在上述目标基础上,进一步强调对文本、语音、图像、视频等多种模态需求信息的综合处理与融合理解,以更全面、更准确地把握需求本质。好的,这是一篇关于“基于多模态的智能需求分析系统架构设计”的技术博客文章,希望能满足您的要求。
2025-07-24 02:38:45
414
原创 AI应用架构师主动学习实践:提升项目效益
AI应用架构师面临着独特而复杂的学习挑战,这些挑战构成了一个多维问题空间,需要系统化思考和针对性解决方案。技术复杂度维度表现为三个相互交织的挑战:技术广度要求、技术深度要求和技术融合要求。AI架构师需要了解从经典机器学习到前沿深度学习的数十种算法,掌握多种框架和工具,同时理解如何将这些技术与传统软件系统融合。调查显示,一名合格的AI架构师需要熟悉至少15个技术领域,这一数字每年增长约12%。时间压力维度源于双重挤压:项目交付周期缩短与学习时间碎片化。
2025-07-24 02:37:48
601
原创 混合推理在AI原生应用中的5大核心优势与应用场景
本文旨在系统阐述混合推理(Hybrid Reasoning)的技术原理,解析其在AI原生应用中的独特价值。涵盖符号推理与神经网络协同工作机制、多模态知识融合策略等关键技术领域。符号推理:基于形式逻辑的规则推导系统,如专家系统中的if-then规则统计推理:依赖概率分布的机器学习方法,如深度神经网络知识图谱:结构化的语义知识网络,实体关系以图结构存储核心概念回顾符号推理:基于规则的确定性决策统计推理:数据驱动的概率性预测混合推理:两者的动态协同与优势互补思考题。
2025-07-23 20:10:03
597
1
原创 AI+视频=?探索AI原生应用在视频领域的无限可能
本文旨在系统解析AI技术在视频处理领域的创新应用,涵盖从基础算法原理到前沿应用场景的全景解读。面向具有基本编程知识的读者,通过直观的技术图解和可运行的代码示例,建立完整的AI视频处理知识框架。(示意图说明:展示从原始视频输入到AI处理输出的完整技术链条)帧率增强:通过插帧技术提升视频流畅度超分辨率重建:将低清视频转换为高清版本语义分割:识别视频中特定物体区域光流估计:计算相邻帧之间的像素运动视频理解是AI处理视频的基础生成模型正在重塑内容创作方式增强技术让旧视频焕发新生。
2025-07-23 18:34:33
766
原创 AI原生应用领域自然语言理解的实战案例分享
本文旨在通过具体案例展示自然语言理解技术在真实场景中的应用,覆盖从基础原理到工程实践的完整知识链路。通过智能客服系统的完整实现过程,读者将掌握NLU核心技术栈。:将文本分割为最小语义单元的过程,如"我爱NLP" → [“我”, “爱”, “NLP”]Embedding:将文本转换为数值向量的魔法编码术Attention:让模型学会关注重点信息的"注意力机制"Transformer如何实现并行化语言理解BERT预训练模型的微调技巧完整的NLU系统构建方法论多模态理解(语音+文本+视觉)
2025-07-23 17:06:21
401
原创 RAG助力AI原生应用突破发展瓶颈
本文旨在系统阐述RAG技术的工作原理及其对AI应用的革新价值,覆盖技术原理、实现方案、应用场景及发展趋势,为开发者提供完整的认知框架和实践指引。从核心概念剖析到代码实现,结合医疗问答案例演示RAG完整工作流程,最后探讨技术演进方向。RAG:检索增强生成(Retrieval-Augmented Generation),融合检索系统与语言模型的混合架构Embedding:将文本转化为数值向量的表示学习过程向量数据库:专门存储和检索高维向量的数据库系统核心收获。
2025-07-23 15:38:08
925
原创 AI原生应用在新闻事实核查中的创新应用
本文旨在解析人工智能技术在新闻事实核查领域的最新应用,涵盖从数据采集到结果呈现的全流程创新,探讨AI如何构建可信信息验证的"数字防火墙"。文章将从核查流程的智能化改造入手,解析核心技术原理,通过实际案例演示AI核查系统的构建,最后展望未来发展趋势。事实核查:通过证据收集和逻辑推理验证信息真实性的过程知识图谱:结构化存储实体及其关系的知识库语义三角:由主体-谓词-客体构成的基本语义单元核心概念回顾AI核查系统就像数字时代的福尔摩斯,通过语义分析、知识比对、证据链构建三重验证。
2025-07-23 14:02:38
434
原创 Llama模型在AI人工智能自然语言处理中的表现
本文旨在系统解析Llama模型的技术架构与实现原理,通过生活化案例帮助读者理解复杂概念,并提供实际应用指导。内容涵盖从基础理论到工程实践的完整知识链。核心概念解析(厨房烹饪比喻)Transformer架构技术细节模型训练与推理代码实现实际应用场景分析未来发展趋势探讨Token:语言处理中的最小语义单位,相当于烹饪中的食材颗粒Embedding:将文字转换为数字向量的过程,类似给食材贴上营养成分标签Attention:模型处理语句时关注重点词汇的能力,犹如厨师判断菜品火候核心概念回顾。
2025-07-23 12:40:42
640
原创 解锁房地产交易区块链公证平台的AI潜力
想象一下,在传统的房地产交易中,你可能要在多个部门之间来回奔波,提交各种繁琐的文件,担心资料的真实性和安全性,还得时刻警惕交易过程中的欺诈风险。而现在,区块链公证平台和AI技术的结合,正悄然改变这一切。比如,有一位购房者小王,在过去购买房产时,光是产权核实就花费了数月时间,还遭遇了虚假产权信息的困扰。但如今,借助新技术,这些问题都有望迎刃而解。
2025-07-23 11:18:44
340
原创 AI人工智能反向传播:解决复杂问题的利器
想象一下,你正在玩一款超难的电子游戏,每一次闯关失败,你都会仔细回想自己哪里操作失误了,然后调整策略再次尝试,直到成功通关。AI人工智能中的反向传播就有点像这个过程。大家或多或少都听说过AI,它在图像识别、语音助手等领域大展身手,那它是怎么不断学习进步,变得越来越聪明的呢?反向传播就是其中一个关键秘密武器。掌握了反向传播,我们就能更好地理解AI是如何解决复杂问题的,无论是在医疗诊断帮助医生发现疾病,还是在自动驾驶中让汽车安全行驶,反向传播都发挥着重要作用。接下来,我们就一步步揭开它的神秘面纱。
2025-07-23 09:56:49
599
原创 DALL·E 2:AI人工智能领域图像生成的佼佼者
本文旨在用通俗易懂的方式解析DALL·E 2的核心技术原理,覆盖从文本理解到图像生成的完整流程,揭示其如何实现"用文字作画"的魔法。通过童话故事引入核心概念,结合披萨制作的类比解释技术原理,最后通过Python代码实战展示图像生成过程。扩散模型:通过逐步去噪生成图像的AI模型CLIP:理解文本与图像关系的神经网络潜在空间:高维数据压缩后的数学表示空间核心概念扩散模型像雕刻时光的艺术家CLIP是连接图文的世界语专家潜在空间是创意的基因库技术突破两阶段训练策略:先对齐语义再优化质量。
2025-07-23 03:34:52
492
原创 AI代理 vs 传统程序:性能对比与架构解析
本文旨在为开发者提供AI代理与传统程序的系统性对比分析,涵盖架构设计、算法原理、性能指标等维度。通过具体代码案例,演示两类系统在真实场景中的实现差异。文章将从核心概念剖析切入,逐步展开到算法实现和系统架构设计,最终通过电商推荐系统的完整案例演示两者的协同工作模式。AI代理:具备环境感知和自主决策能力的智能体,典型代表如AlphaGo传统程序:基于确定性规则执行的软件系统,如银行交易系统Q-learning:基于价值迭代的强化学习算法核心收获传统程序确保基础服务的稳定性。
2025-07-23 01:59:22
155
原创 代码补全 vs 代码生成:AI编程助手的正确打开方式
本文旨在帮助开发者理解AI编程助手的核心技术分支——代码补全与代码生成的区别与联系,掌握在不同开发场景下的最佳实践策略。涵盖从基础概念到实际应用的完整知识体系。通过对比分析、技术原理拆解、实战案例演示三个维度,构建完整的认知框架。特别设置"AI编程决策树"帮助读者快速判断适用场景。代码补全:根据上下文预测并推荐代码片段的智能提示技术代码生成:基于自然语言描述自动产出完整代码模块的生成式AI技术上下文感知:AI模型理解当前代码语义环境的能力编程意图推断:AI对开发者代码目标的理解准确度核心概念回顾。
2025-07-23 00:31:11
723
原创 空间智能:AI人工智能的下一个风口?
想象一下,你身处一个繁华的未来都市,城市里的自动驾驶汽车能精准地穿梭在复杂的街道中,智能机器人可以在杂乱的仓库里高效地分拣货物,这些场景的实现都离不开一种神奇的能力——空间智能。或许你在玩一些大型3D游戏时,角色需要在复杂的地图中导航、探索,这背后也有着空间智能的影子。在人工智能不断发展的今天,空间智能正逐渐崭露头角,有望成为AI领域的下一个风口。学习空间智能相关知识,不仅能让我们更好地理解未来科技的走向,还可能在未来的工作、生活中为我们带来更多便利,比如帮助我们更好地与智能设备交互。
2025-07-22 23:02:59
534
原创 AI代码生成器对比评测:GitHub Copilot vs. Tabnine vs. Codex
在AI技术革新软件开发流程的今天,我们针对三款最具代表性的智能编程助手:GitHub Copilot(集成Codex)、Tabnine和OpenAI Codex,从技术架构到实际应用进行全方位评测。本文涵盖代码补全准确率、上下文理解深度、多语言支持等核心维度。本文采用"理论解析→实战验证→决策指南"的三段式结构,首先解析技术原理,再通过真实项目测试验证性能,最后给出选型建议和未来展望。代码补全:根据已有代码上下文预测后续代码片段:在预训练模型基础上进行领域数据微调Token预测。
2025-07-22 21:41:04
576
原创 AI人工智能领域Stable Diffusion的优化策略
带您深入了解Stable Diffusion模型的核心优化技术,覆盖从算法原理到工程实践的完整链条模型瘦身三剑客:量化/蒸馏/剪枝加速核心:注意力改造+编译优化精准控制:ControlNet空间约束显存管理:梯度检查点+分布式训练如同小智的厨房升级:轻量厨具+精准控温+自动化流程=米其林级出餐效率!
2025-07-22 20:12:50
474
原创 Whisper 与 Docker 结合:快速部署指南
就像一个“魔法盒子”——把Whisper的运行环境(Python、依赖包、模型)全部打包成一个“镜像”,不管你用Windows、Mac还是Linux,只要打开这个盒子(运行容器),就能立刻用Whisper转语音为文字。(目前最强大的自动语音识别模型),但安装时遇到了“Python版本冲突”“CUDA驱动不兼容”“依赖包装不上”的三连击……Docker解决了“环境配置地狱”,Whisper解决了“语音识别 accuracy 地狱”,两者结合就是“运行命令后,等待几秒(取决于模型大小和音频长度),会在本地的。
2025-07-22 18:50:54
577
原创 深度解析AI大模型情感分析对抗训练的方法
想象一下,你正在一家大型电商平台工作,每天要处理海量的用户评价。这些评价里有赞扬、有抱怨,还有一些隐晦的情绪表达。如果能准确分析出用户的情感倾向,就能更好地改进产品和服务。而AI大模型的情感分析就像是一个超级智能的“情感侦探”,能快速解读文本中的情感。但现在,这个“侦探”面临着一些挑战,对抗训练就是提升它能力的秘密武器。我们都知道AI在很多领域都有应用,而情感分析能让AI更好地理解人类的情感和意图。接下来,我们将沿着从基础概念到高级方法的路径,深入探索AI大模型情感分析对抗训练的方法。
2025-07-22 16:07:01
398
原创 PyTorch模型可视化:理解神经网络内部机制
本技术分析系统解构PyTorch框架下的神经网络可视化体系,通过层级激活映射、梯度反向传播可视化和动态计算图分析三位一体的方法论,建立深度学习模型的可解释性工程技术规范。结合TensorBoard、Netron和PyTorchViz三大工具链,提出覆盖从神经元激活模式识别到模型架构优化的全景式可视化解决方案。
2025-07-22 14:38:49
790
原创 自编码器在数据去噪中的神奇效果
本文将深入探讨自编码器在数据去噪领域的强大能力。我们将从基本原理出发,通过生动的比喻解释自编码器如何像"数据过滤器"一样工作,逐步剖析其架构和训练过程。文章包含详细的代码实现(PyTorch框架),展示自编码器在图像和时序数据去噪中的实际应用,并分析其相比传统方法的优势。最后,我们将展望自编码器在医疗影像、金融数据分析等领域的潜在应用。在现实世界的数据收集中,噪声无处不在——就像老式收音机中的静电干扰,会掩盖我们真正关心的信号。
2025-07-22 13:09:18
415
原创 语音识别数据集大全:公开资源整理与使用指南
这就好比我们要盖一座语音识别的高楼大厦,数据集就是必不可少的建筑材料,接下来就让我们一起探索公开的语音识别数据集资源,开启一场数据的寻宝之旅。在本次学习中,我们将了解到丰富的公开语音识别数据集资源,学会如何选择适合自己项目的数据集,以及掌握使用这些数据集的基本方法。我们的学习路径是先了解语音识别数据集的整体概况,接着认识一些常见的公开数据集,再学习如何使用它们,最后探讨使用过程中的注意事项。无论是科研人员做实验,还是开发者开发新的语音应用,这些数据集都能发挥巨大的作用。
2025-07-22 11:47:22
802
原创 Gemini AI原生应用开发指南:从入门到精通
本文旨在为开发者提供全面的Gemini AI应用开发指南,涵盖从基础概念到高级应用的所有关键环节。我们将重点介绍如何利用Gemini AI的API开发功能丰富的原生应用,包括文本生成、图像理解、多模态交互等核心功能。介绍Gemini AI的核心概念详细讲解API集成方法展示模型微调技巧提供实际项目案例探讨最佳实践和未来趋势Gemini AI:Google开发的多模态AI模型,能够理解和生成文本、代码、图像等内容原生应用。
2025-07-22 10:11:50
505
原创 AI人工智能时代,Stable Diffusion的法律合规问题
比如,有一位设计师使用Stable Diffusion生成了一幅广告海报,结果被原作品的作者发现海报中的部分元素和自己的作品很相似,作者认为设计师侵犯了他的版权。我们的学习路径是这样的:先了解Stable Diffusion的基本概念和相关法律概念,然后深入探讨它涉及的版权、隐私等法律问题,接着从不同角度分析这些问题,最后学习如何在实际应用中做到法律合规。解决方案是查阅相关的使用条款和法律法规,一般来说,如果使用的是开源的Stable Diffusion版本,生成图像的版权归属可能更复杂,需要进一步分析。
2025-07-22 03:36:19
577
原创 AI优化算法对比:梯度下降与遗传算法的适用场景
没有万能算法:梯度下降和遗传算法各有优势,没有绝对优劣,只有是否适合特定问题问题特性决定选择:函数可微性、连续性、维度和约束条件是最关键的决定因素混合策略往往最优:许多复杂问题通过"遗传算法全局探索+梯度下降局部优化"的组合策略能获得最佳结果实际应用中的权衡:在精度与效率、全局与局部、理论保证与实用效果之间寻找平衡。
2025-07-22 02:08:08
365
原创 GPT-4在金融领域的创新应用与实践
随着人工智能技术的飞速发展,自然语言处理能力得到了极大提升。GPT - 4作为OpenAI研发的先进语言模型,具有强大的语言理解和生成能力。在金融领域,信息的处理和分析至关重要,每天都有大量的文本数据需要处理,如新闻报道、研报、合同等。GPT - 4的出现为金融行业带来了新的机遇,它可以帮助金融机构更高效地处理信息、做出决策、提升客户服务质量,因此研究GPT - 4在金融领域的应用具有重要的现实意义。本文介绍了GPT - 4在金融领域的创新应用与实践。首先阐述了背景,包括重要性、目标读者和核心挑战;
2025-07-22 00:46:13
541
原创 AI 人工智能浪潮中的 Gemini 技术迭代
Gemini的多模态对齐技术(将不同模态数据映射到同一语义空间),就像为AI装上“跨模态大脑”,让文字、图像、视频等信息能“对话”。:Gemini的技术迭代,是AI从“工具”向“智能伙伴”进化的关键一步。它不仅让机器更懂“世界的丰富性”,也为人类解决复杂问题打开了新可能——未来的AI,或许真能像人类一样,用“五感”理解世界,用“智慧”创造价值。想象一个场景:你给AI发送一段包含文字(“今天下雨”)、图片(积水的街道)、语音(雨声)和视频(行人撑伞)的混合信息,要求它“分析是否需要带伞,并规划上班路线”。
2025-07-21 23:24:17
896
原创 Llama模型在库存管理中的智能预测
库存管理是企业运营中的关键环节,它直接影响着企业的成本、利润和客户满意度。合理的库存水平可以确保企业及时满足客户需求,避免缺货损失,同时减少库存积压带来的成本浪费。传统的库存管理方法往往依赖于经验和简单的统计模型,难以应对复杂多变的市场需求和供应链环境。随着人工智能技术的发展,利用先进的模型进行库存智能预测成为了企业提升竞争力的重要手段。本文介绍了Llama模型在库存管理智能预测中的应用。首先阐述了库存管理的重要性和面临的挑战,然后详细解析了Llama模型的核心概念、技术原理与实现方式。
2025-07-21 20:39:47
839
原创 Actor - Critic算法为AI人工智能带来的变革
Actor-Critic是**“策略学习”与“价值学习”的融合**,解决了传统强化学习“效率低、方差大、无法处理连续动作”的问题,是AI从“感知”(比如图像识别)走向“决策”(比如自动驾驶)的关键算法。比如,训练一个“抓杯子”的机器人,用Actor-Critic学会后,只需调整奖励函数,就能快速学会“抓盘子”“抓手机”。从游戏到机器人,从推荐系统到自动驾驶,Actor-Critic正在成为AI“决策大脑”的核心组件,推动AI从“实验室”走向“现实世界”。”的闭环,正是Actor-Critic的核心逻辑。
2025-07-21 19:04:15
684
原创 AI人工智能助力:基于预训练的智能客服系统设计
预训练智能客服系统的本质,是让AI从“听懂话”到“会解决问题”。通过知识金字塔的层层拆解,复杂的技术原理变得可触可感——现在,你已掌握设计此类系统的核心逻辑,不妨从一个小场景(如“校园快递客服”)开始实践吧!
2025-07-21 17:28:45
446
原创 AI人工智能领域Llama的自适应优化算法
传统优化算法如同一位严格按照预设路线行驶的司机,而自适应优化算法则像一位经验丰富的出租车司机,能够根据路况(数据分布)、天气(计算资源)和乘客需求(模型目标)实时调整路线和速度。学习速度控制:什么时候该快,什么时候该慢?方向调整:如何避免陷入局部最优的"死胡同"?资源分配:如何在有限计算资源下最大化学习效果?
2025-07-21 16:06:46
776
原创 探究AI人工智能里MCP模型上下文协议的性能表现
简单来说,MCP上下文协议是一套规则与机制,定义了AI模型如何接收、存储、组织、检索和利用上下文信息。如果将AI模型比作大脑,上下文协议就是"工作记忆系统",决定了哪些信息被记住、记住多久、如何与新信息关联。生活化类比保留哪些应用在后台(上下文内容选择)每个应用保留多少状态(上下文深度)何时释放内存(上下文遗忘)如何快速切换应用(上下文切换效率)MCP模型上下文协议如同AI系统的"认知脊柱",支撑着从简单问答到复杂推理的各种智能行为。
2025-07-21 14:31:16
844
原创 分布式进化算法:处理大规模问题的利器
分布式进化算法通过将传统进化计算技术与现代分布式系统架构相结合,有效解决了大规模优化问题的计算瓶颈。本文系统性地剖析了分布式进化算法的理论基础、架构设计模式、实现机制以及实际应用场景。我们将首先从进化算法的计算本质出发,推导其分布式化的数学基础,然后深入分析主流分布式实现框架(包括岛屿模型和细胞模型)的设计原理,接着探讨在Spark和MPI等不同计算环境下的工程实现细节,最后评估其在超参数优化、神经网络架构搜索等前沿领域的应用效果。
2025-07-21 12:52:15
795
原创 Gemini 在 AI 人工智能中的应用实例
本文旨在全面介绍Gemini AI模型的技术原理和实际应用,涵盖从基础概念到高级应用的各个层面。我们将重点关注Gemini在多模态理解和生成方面的独特优势,以及这些能力如何转化为实际应用价值。文章将从Gemini的基本概念入手,逐步深入其技术架构和应用实例,最后探讨未来发展趋势。每个部分都包含详细的技术解释和实际案例。Gemini: Google DeepMind开发的多模态AI模型,能够理解和生成文本、图像、音频等多种形式的内容。多模态模型。
2025-07-21 11:30:19
514
原创 从0到1:AI人工智能K近邻算法学习之路
本文旨在为读者提供K近邻算法的全面指南,从基本概念到实际应用,帮助读者掌握这一经典机器学习算法。我们将覆盖算法原理、数学基础、代码实现和优化技巧等内容。通过生活故事引入KNN概念详细解释算法原理和核心概念展示Python实现代码探讨实际应用和优化技巧提供学习资源和未来方向K近邻算法(KNN):一种基于实例的学习算法,通过计算新样本与训练样本的距离来进行分类特征(Feature):描述数据的属性或变量标签(Label):数据的分类结果或目标值距离度量(Distance Metric)
2025-07-21 10:02:07
959
原创 AI人工智能领域半监督学习的图神经网络应用
在人工智能的世界里,我们也常常面临类似的情况。在很多数据集中,有标签的数据就像那些完整的陶器,数量稀少且获取成本高;半监督学习就是解决这类问题的一种策略,而图神经网络在其中的应用就像是给你提供了一种巧妙的拼接方法,能让我们利用少量有标签数据和大量无标签数据来完成更精准的任务。但在实际情况中,获取大量有标签的数据是非常困难的,所以半监督学习就显得尤为重要。而图神经网络作为一种强大的工具,在半监督学习领域的应用能帮助我们更好地处理各种复杂的数据关系,具有广泛的应用场景,如社交网络分析、生物分子结构预测等。
2025-07-21 03:26:34
676
原创 图像处理领域:AI人工智能的重要地位
想象一下:一位医生在偏远地区的诊所,通过手机拍摄的CT影像,AI系统能即时识别早期肿瘤迹象;一辆自动驾驶汽车在暴雨中平稳行驶,其视觉系统能穿透雨幕准确识别行人与交通标志;一位考古学家通过AI技术,将残破的古代壁画自动修复还原…这些不再是科幻场景,而是AI驱动的图像处理技术正在实现的现实。从我们手机里的美颜相机到NASA的太空图像分析,从医学诊断到安防监控,人工智能已经成为现代图像处理的"灵魂引擎"。为什么这很重要? 人类感知的80%信息来自视觉,而图像处理正是让机器"看见"并"理解"世界的桥梁。AI的加入,
2025-07-21 02:04:39
496
原创 Bard AI推荐系统:个性化推荐引擎的开发指南
打开Bard AI查“机器学习入门教程”,它不仅推荐了经典教材,还附上了“适合新手的5个Python项目”和“避免踩坑的10条建议”——正好戳中你想“边学边练”的需求。Bard AI的推荐系统始终坚持“以用户为中心”——不仅推荐你“可能喜欢”的内容,更推荐你“应该知道”的内容。假设你是超市常客,导购记住了你“每周买牛奶、偶尔买咖啡”的习惯,下次会主动把“新到的低脂牛奶”和“搭配咖啡的曲奇”放在你必经的货架——这就是。,一步步拆解Bard AI推荐系统的开发逻辑,让你从“知其然”到“知其所以然”。
2025-07-21 00:42:44
656
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人