基于PyTorch的少样本学习(Few-shot Learning)实现:用"小抄"教会AI快速学习新任务
关键词:少样本学习、PyTorch、元学习、支持集、原型网络
摘要:传统深度学习需要"海量数据喂养",但现实中很多场景(如罕见病诊断、新物种识别)只有少量样本。本文将用"小学生考试"的比喻,带您一步步理解少样本学习(Few-shot Learning)的核心原理,并用PyTorch实现一个能"看5张图学会新类别"的原型网络(Prototypical Networks),最后结合医疗、金融等真实场景,揭示这项技术如何让AI从"数据吃货"变身"学习高手"。
背景介绍
目的和范围
想象一下:医生拿到一种从未见过的罕见病患者的5张CT图像,希望AI能快速识别同类病例;程序员需要让客服机器人识别"用户抱怨快递盒破损"这个新意图,但只有3条标注数据。这些场景中,传统深度学习(需要成千上万张标注图)完全失效,少样本学习(Few-shot Learning, FSL)正是为解决这类问题而生。本文将覆盖少样本学习的核心概念、经典算法(原型网络)、PyTorch实战代码,以及真实应用场景。
预期读者
- 对PyTorch有基础了解(会写简单的神经网络)
- 听说过深度学习但没接触过少样本学习的开发者/学生
- 想