AI优化算法对比:梯度下降与遗传算法的适用场景

AI优化算法对比:梯度下降与遗传算法的适用场景

1. 引入与连接:优化的两种思维路径

想象你站在连绵起伏的山脉中,需要找到最低的山谷。你会怎么做?

一种方法是环顾四周,找到最陡峭的下坡方向,一步步向下走——这就是梯度下降的思路。

另一种方法是派出多个探险小队,分散在不同位置探索,定期分享发现并向更有希望的区域集中——这就是遗传算法的工作方式。

在人工智能的世界里,几乎所有问题最终都可以转化为某种形式的优化问题:从训练神经网络到调度物流路线,从设计产品参数到制定投资策略。理解梯度下降与遗传算法这两种核心优化方法的适用场景,将为我们解决复杂问题提供强大的思维工具。

2. 概念地图:两种优化范式的定位

![优化算法概念图]

优化算法谱系

  • 基于梯度的优化
    • 梯度下降(GD)
    • 随机梯度下降(SGD)
    • 批量梯度下降(BGD)
    • 动量法、Adam等改进算法
  • 基于启发式的优化
    • 进化算法
      • 遗传算法(GA)
      • 粒子群优化(PSO)
      • 模拟退火(SA)
    • 蚁群算法
    • 禁忌搜索
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值