AI优化算法对比:梯度下降与遗传算法的适用场景
1. 引入与连接:优化的两种思维路径
想象你站在连绵起伏的山脉中,需要找到最低的山谷。你会怎么做?
一种方法是环顾四周,找到最陡峭的下坡方向,一步步向下走——这就是梯度下降的思路。
另一种方法是派出多个探险小队,分散在不同位置探索,定期分享发现并向更有希望的区域集中——这就是遗传算法的工作方式。
在人工智能的世界里,几乎所有问题最终都可以转化为某种形式的优化问题:从训练神经网络到调度物流路线,从设计产品参数到制定投资策略。理解梯度下降与遗传算法这两种核心优化方法的适用场景,将为我们解决复杂问题提供强大的思维工具。
2. 概念地图:两种优化范式的定位
![优化算法概念图]
优化算法谱系
- 基于梯度的优化
- 梯度下降(GD)
- 随机梯度下降(SGD)
- 批量梯度下降(BGD)
- 动量法、Adam等改进算法
- 基于启发式的优化
- 进化算法
- 遗传算法(GA)
- 粒子群优化(PSO)
- 模拟退火(SA)
- 蚁群算法
- 禁忌搜索
- 进化算法