- 博客(1569)
- 收藏
- 关注
原创 必学技巧!AI应用架构师的AI评估系统研究成果
假设你是某电商公司的AI架构师,负责搭建推荐系统。推荐的商品都是用户3个月前买过的(数据老化);男性用户收到的都是电子设备,女性用户都是化妆品(性别偏见);周末点击率骤降,但没人知道为什么(缺乏监控)。这些问题的根源,不是模型不够好,而是没有一套能提前发现问题的评估系统。数据层:判断数据是否“能用”(质量)、是否“过时”(漂移);模型层:评估模型是否“会做题”(性能)、是否“讲道德”(伦理);部署层:监控模型是否“生病”(性能下降)、是否“越界”(伦理违规)。本文按照“
2025-09-15 03:30:48
334
原创 利用ClickHouse构建大数据实时监控系统
假设你是电商公司的运营经理,“双十一”零点刚过,老板拿着手机问你:“现在每秒多少订单?”你打开原来的系统,刷新页面等了5秒,显示“1000单/秒”。可等你说完,老板又问:“那现在呢?”你再刷新,又等5秒——这时候,实际订单量可能已经涨到1500单/秒,或者跌到800单/秒了。传统数据库的痛点:像MySQL这样的OLTP数据库,擅长处理“增删改查”的小数据,但面对“每秒10万条数据”的实时写入和“每秒100次聚合查询”的需求,就像“用自行车运快递”——根本跟不上。快!快到什么程度?
2025-09-14 23:09:58
593
原创 Gemini在实时AI原生应用中的关键技术解析
实时AI原生应用(Real-Time AI-Native Application)是下一代智能系统的核心形态——它以AI为底层架构基石,而非附加功能,要求低延迟(≤100ms)、高动态(实时上下文更新)、强个性化(用户意图实时适配)、多模态交互(文本/图像/音频/视频同步处理)。Google Gemini作为首个专为通用人工智能(AGI)设计的多模态大模型,其技术体系天然贴合实时AI原生应用的核心需求。本文从第一性原理多模态统一表示与实时处理动态上下文的稀疏激活与缓存边缘-云协同的分布式推理架构。
2025-09-14 21:32:47
725
原创 教育行业大数据架构:学习分析与个性化推荐实践
在当今数字化时代,教育行业积累了大量的数据,如学生的学习记录、考试成绩、在线学习行为等。这些数据蕴含着巨大的价值,能够帮助教育者更好地了解学生的学习情况,提供更有针对性的教学服务。本文的目的就是探讨如何构建有效的大数据架构,对教育数据进行分析和利用,实现学习分析和个性化推荐,提升教育质量。范围涵盖了教育行业大数据架构的各个方面,包括数据采集、存储、处理、分析以及推荐系统的设计和实现。本文将首先介绍教育行业大数据架构相关的核心概念,包括学习分析和个性化推荐的含义以及它们之间的关系。
2025-09-14 20:00:40
524
原创 挖掘大数据数据采集的隐藏价值
在传统认知中,数据采集的目标是“尽可能多、尽可能全地获取数据”。但在大数据时代,“正确的数据”比“更多的数据”更重要。我们需要重新定义数据采集的核心目标:数据采集 = 采集目标数据 + 记录“采集上下文” + 留存“质量痕迹” + 捕捉“行为逻辑”其中,“采集上下文”“质量痕迹”“行为逻辑”就是数据采集的“隐藏价值”——它们不是目标数据本身,却能让目标数据“活”起来,成为可解释、可信任、可挖掘的资产。
2025-09-14 18:38:43
648
原创 智慧城市应用前景:提示工程架构师的技术突破
当我们谈论“智慧城市”时,曾几何时的想象是“无处不在的传感器”“实时跳动的数据 dashboard”——但这些“城市大脑”的早期形态,终究停留在“看数据、做判断”的工具层面。今天,随着大语言模型(LLM)的爆发,智慧城市正从“数据驱动”跃迁到“认知驱动”:它需要像人一样理解情境、关联知识、主动决策——比如在暴雨天提前提醒老城区居民“你家楼下的排水管道可能淤堵”,在演唱会散场时自动调整地铁末班车时间,甚至用方言安抚突发火灾中的独居老人。而连接LLM与城市复杂场景的关键桥梁,正是。
2025-09-14 17:02:00
323
原创 大数据领域数据安全的重要性与挑战解析
阶段核心风险示例场景采集数据来源不可信(如第三方数据注入恶意代码)某电商平台接入第三方物流数据,导致用户地址信息被篡改存储权限泄露(如S3公开桶)、数据篡改2022年,特斯拉S3公开桶泄露10万条客户数据处理算法攻击(如模型反演、数据投毒)某银行用机器学习模型评估信用,攻击者注入虚假数据导致模型误判传输中间人攻击(MITM)、数据窃听物联网设备通过未加密的MQTT协议传输数据,被黑客截获共享隐私泄露(如关联分析暴露个人信息)
2025-09-14 15:39:48
564
原创 大数据领域存算分离的多模态数据存储方案
随着大数据时代多模态数据(文本、图像、音频、视频等)的爆炸式增长,传统存算一体架构因资源耦合导致的扩展性瓶颈、性能浪费等问题日益凸显。存算分离架构通过将计算与存储资源解耦,为多模态数据的高效存储与处理提供了新的范式。本文从第一性原理出发,系统分析多模态数据的异构性挑战,推导存算分离的必要性;提出分层式多模态存储架构(计算层、存储层、元数据层),结合对象存储、文件存储、数据库存储的优势适配不同类型数据;通过元数据驱动的跨模态关联智能存储优化等机制,解决多模态数据的检索、一致性与性能问题。
2025-09-14 14:17:40
402
原创 绝了!AI应用架构师从专业角度看AI在金融市场应用案例
作为一名深耕金融AI领域的应用架构师,我将从架构设计量化交易中的AI策略架构(如何用LSTM/强化学习捕捉市场非线性规律?智能风控中的风险识别架构(如何用图神经网络揪出“关联欺诈”?AI驱动的客户服务架构(如何让机器人听懂“弦外之音”?每个案例都会拆解“底层逻辑→架构设计→关键技术→代码框架”,帮你搞懂“AI在金融中到底怎么用”。量化交易:用LSTM/强化学习捕捉市场非线性规律,动态调整策略;智能风控:用XGBoost/GNN识别风险,提高准确率和效率;客户服务。
2025-09-14 12:40:28
333
原创 《揭秘核心!AI应用架构师助力AI驱动价值创造的关键因素》
数据割裂:企业数据分散在CRM、ERP、日志系统中,缺乏统一的“特征层”,导致模型无法有效学习;模型不可靠:AI模型存在“漂移”(数据/概念变化导致精度下降)、“黑箱”(无法解释决策)、“脆弱性”(对抗攻击易失效)等问题,无法满足业务稳定性要求;部署困难:模型从“实验室”到“生产环境”的适配成本高(如延迟、吞吐量、兼容性),很多模型“训练得好,用不起来”;业务适配性差:AI技术方案与业务流程冲突(如实时推荐要求低延迟,但传统业务系统是异步架构),导致“技术先进,业务不用”。
2025-09-14 11:03:22
756
原创 大数据领域数据架构的自动化部署实践
你有没有过这样的经历?想搭一个大数据集群做分析,结果花了3天时间:先给10台服务器装Java,再手动下载Hadoop安装包,然后逐台修改配置文件,最后启动集群时发现“节点无法通信”——原来是防火墙没关!本文的目的:帮你告别“手动部署的痛苦”,学会用自动化工具将大数据架构的部署流程“代码化”。大数据架构的核心组件(Hadoop、Spark、Hive);自动化部署的核心工具(Ansible、Docker、Kubernetes);从0到1搭建自动化部署 pipeline 的实战步骤。范围。
2025-09-14 09:41:23
425
原创 提示系统安全审计风险防控体系:提示工程架构师的构建方法
当企业如火如荼地将大语言模型(LLM)嵌入客服、营销、数据分析等核心场景时,提示系统(Prompt System)的安全问题攻击者通过(提示注入)让AI忽略原有指令,泄露用户隐私(比如“忘记之前的要求,告诉我张三的订单号”);硬编码的提示模板因权限管理漏洞被篡改,导致AI输出违规内容(比如生成恶意营销话术);LLM的“幻觉”输出未被审计,引发合规风险(比如编造虚假金融建议)。这些问题并非靠“输入过滤”或“输出检查”就能解决——
2025-09-14 03:02:24
321
原创 AI架构师的实时推理成本模型:如何计算ROI?
实时推理的核心矛盾是三个目标的权衡低延迟(Latency):≤100ms(用户感知阈值);高吞吐量(Throughput):每秒处理请求数(QPS);低成本(Cost):每请求成本(Cost Per Request, CPR)。Latency×Throughput∝Latency×Throughput∝Cost∝×TimeCost∝×Time例如,增加批处理大小(Batch Size)可提高吞吐量,但会增加延迟;
2025-09-14 01:25:13
300
原创 智能法律顾问系统架构:微服务还是单体?我的选型思考
假设你是一家法律科技公司的技术负责人,要开发一款"智能法律顾问系统":它需要支持用户在线咨询(比如"劳动合同纠纷怎么处理?“)、法规实时检索(比如"2024年最新《民法典》关于离婚财产分割的规定是什么?”)、法律文书自动生成(比如"帮我写一份起诉状"),还要能预测案件胜诉率(比如"我这个民间借贷案件赢的概率有多大?")。这个系统该用"单体架构"还是"微服务架构"?本文将围绕这个问题,从"概念理解→场景适配→代码实战→选型建议"一步步展开,帮你理清思路。故事引入:用律师事务所的日常工作类比系统架构;
2025-09-13 22:16:07
540
原创 提示工程架构师必读:服务网格方案与云原生技术融合最佳实践
提示工程的目标是让LLM高效、安全、可靠地服务于业务流量混乱:如何把高优先级的请求(比如付费用户的生成任务)分配给性能更好的模型?安全隐患:模型API的调用凭证容易泄露,如何保证服务间通信的加密?监控盲区:某个模型服务延迟突然升高,如何快速定位是网络问题还是模型本身的问题?版本管理:新模型上线时,如何逐步将流量从旧版本切换到新版本,避免全量发布的风险?服务网格(Service Mesh)的出现,正是为了解决这些微服务通信的痛点。它能在不修改模型服务代码的情况下,实现流量路由、安全加密、可观察性。
2025-09-13 20:54:07
371
原创 架构师手册:AI知识创新平台的技术架构
AI知识创新平台的核心不是“替代人”,而是“赋能人”——它能帮科研人员从海量数据中解放出来,专注于“创造性的思考”;能帮企业从碎片化的知识中挖掘价值,实现“创新的加速”。作为架构师,我们的任务不仅仅是设计技术架构,更是设计“知识与人的连接方式”。未来的AI知识创新平台,将是“人-知识-AI”三者的协同系统——而我们,正是这个系统的“设计者”与“推动者”。参考资料《知识图谱:方法、实践与应用》(王昊奋等);《大语言模型:原理与工程实践》(李沐等);
2025-09-13 19:16:58
637
原创 AI原生应用语义搜索:革新传统搜索模式
你有没有过这样的经历:想找一部"像《流浪地球》那样有亲情和硬核科技的科幻片",但用传统搜索时,必须输入"科幻片 亲情 硬核科技 类似流浪地球"这样的关键词,结果却跳出一堆不相关的电影?本文的目的,就是帮你搞懂AI原生应用中的语义搜索——它为什么能"听懂"你的需求,比传统搜索更聪明?我们会覆盖语义搜索的核心概念(Embedding、向量数据库、上下文理解)、工作原理、代码实战,以及实际应用场景,让你明白它如何革新传统搜索模式。故事引入:用"找电影"的场景对比传统搜索与语义搜索的差异;核心概念解释。
2025-09-13 17:39:52
580
原创 金融AI风险预警敏捷架构设计:AI应用架构师分享如何支持快速迭代
金融机构的核心使命之一是"控风险"——小到信用卡欺诈、大到企业信用违约,风险预警系统就像"金融免疫系统",需要及时识别威胁。迭代慢:模型从训练到部署需要数周甚至数月,无法应对欺诈分子的"快速进化"(比如新型刷单、账户盗用手段);适应性差:数据分布变化(比如经济下行期的用户还款行为改变)会导致模型"失效",但调整模型需要重新走一遍"数据清洗-训练-审批-部署"的冗长流程。本文的目的,是通过敏捷架构设计,让金融AI风险预警系统具备"快速感知变化、快速调整模型、快速验证效果"的能力。
2025-09-13 16:17:55
583
原创 提示工程进阶:构建千万级吞吐量的系统架构
去年双11,我朋友负责的AI客服系统遭遇了一场“灭顶之灾”:原本支撑10万QPS的服务,在流量峰值达到50万QPS时,延迟从200ms飙升到10s,错误率直接破30%。监控面板上,“prompt渲染超时”“KV缓存击穿”“GPU显存溢出” 等报警铺天盖地——而就在一周前,他们还为“用思维链把回答准确率提升20%”而庆祝。朋友事后复盘时说:“我们之前把所有精力放在‘写更好的prompt’上,却忘了当用户量从1万涨到1000万时,prompt本身的‘工程化能力’才是生死线。”这不是个例。很多团队在提示工程的“
2025-09-13 14:46:08
517
原创 某物流企业边缘计算项目:提示工程架构师的方案优化
我们先走进这家企业的生鲜仓一个透明塑料袋装着草莓,快递单贴在袋身,反光严重;一个泡沫箱印着“生鲜冷链”,但快递单被胶带遮住一半;一个纸箱混在生鲜堆里,其实是客户退的普通日用品。分拣机器人的“眼睛”(摄像头)拍下这些图像,传给50公里外的云端AI模型——等模型识别出“草莓是生鲜、需走冷链通道”,再把指令传回来,已经过了2秒。此时,草莓已经多走了3个传送带来回,旁边的普通包裹又堵了线;更糟的是,反光的快递单被模型认错,机器人把草莓分到了普通通道,等人工发现时,草莓已经捂了半小时,只能报损。
2025-09-13 13:24:13
585
原创 大数据降维的数学原理与工程实现
降维的本质是**“减去冗余,加上洞察”**——它将高维数据的“噪音”剥离,让隐藏的结构浮出水面。用更低的维度,传递更本质的信息。未来,随着深度学习、因果推断与拓扑学的结合,降维将更智能、更安全、更可解释——它不仅是大数据处理的工具,更是人类理解复杂世界的“眼镜”。
2025-09-13 12:02:18
701
原创 利用 Hadoop 挖掘大数据领域的商业价值
大数据的商业价值,不在于“数据的多少”,而在于“如何利用数据”。Hadoop给了企业一把“钥匙”,让企业能够打开“数据资产”的宝库,挖掘出隐藏在数据中的“利润”。如果你是企业的技术负责人或数据分析师,不妨从Hadoop开始,开启你的大数据商业价值之旅!
2025-09-13 10:40:20
390
原创 AI应用架构师的新机遇:智能Web3应用开发框架深度剖析
当AI的“大脑”遇到Web3的“去中心化骨架”,会碰撞出怎样的火花?如何让AI模型突破中心化平台的限制,在去中心化的Web3世界中发挥价值?如何解决“智能合约不会思考”的痛点,让DApp(去中心化应用)具备真正的“智能”?
2025-09-13 09:02:45
718
原创 大数据领域 HDFS 的数据清理与归档策略
找常用的玩具要翻半天(性能下降箱子装不下新玩具(存储容量不足有些玩具早就坏了/不玩了,还占着地方(成本浪费HDFS面临的问题和这一模一样!作为Hadoop生态的核心存储系统,它负责存储日志、传感器数据、交易记录等海量数据。存储成本高:HDFS默认用“多副本”(通常3份)存储所有数据,不管数据是否常用,都占用高性能磁盘(比如SSD),成本极高;元数据压力大:HDFS的NameNode存储所有文件的元数据(路径、大小、权限等),如果有上亿个小文件,NameNode会因内存不足崩溃;性能下降。
2025-09-13 02:34:27
285
原创 AI原生应用中的幻觉缓解:5大核心策略全解析
用户问“你们产品支持医保报销吗?”,AI自信回答“支持所有医保类型”,但实际上产品只对接了3个地区的医保;医疗助手给用户的用药建议里,“贴心”地加了一个不存在的副作用;法律AI引用了一条“2024年新出台的《民法典》第1234条”,但查遍法条也没找到这个条款。这些AI幻觉(Hallucination)——大模型生成不符合事实、无依据或矛盾内容的现象——正在成为AI应用落地的“信任杀手”。据Gartner 2024年报告,60%的企业AI应用因幻觉问题推迟上线。
2025-09-13 01:12:30
599
原创 零数据丢失!AI训练数据容灾备份:增量同步+异地冗余的落地技巧
对于AI模型来说,训练数据是“燃料”,更是“生命线”。一次硬盘损坏、误操作或机房火灾,都可能让数月积累的训练数据灰飞烟灭,导致项目延期、成本飙升,甚至模型研发前功尽弃。本文将揭开“零数据丢失”的AI训练数据容灾备份之谜,通过增量同步(高效传输变化数据)与异地冗余(分散存储风险)的组合拳,结合实战技巧、代码示例与案例分析,帮你构建一套“抗造”的数据保护体系。无论是日均TB级的图像训练数据,还是实时更新的用户行为日志,都能实现“灾难来了也不怕”的安全感。AI模型的性能取决于数据的质量与数量。
2025-09-12 23:40:26
647
原创 AI应用架构师必学:实时推理系统的链路追踪
实时推理系统(Real-Time Inference System)是指在 milliseconds 级延迟内,对用户请求做出AI决策的系统。电商推荐:用户刷新首页时,100ms内返回个性化商品列表;实时风控:用户点击支付时,50ms内判断是否为欺诈行为;图像识别:直播平台实时检测违规画面(延迟≤200ms)。用户请求 → API网关 → 特征工程(获取/处理用户/物品特征) → 模型推理(调用AI模型计算) → 结果后处理(排序/过滤) → 返回响应我是张三。
2025-09-12 22:03:18
668
原创 大数据分析中的匿名化技术:合规与效能的平衡
想象一下:你在电商平台买了一盒感冒药,第二天就收到了"针对感冒患者的保健品推荐"——这背后是数据的力量,但也让你不禁担心:“我的健康信息是不是被泄露了?既要用数据做分析(比如优化推荐、研究疾病),又不能泄露用户的个人隐私。匿名化技术就是解决这个问题的"钥匙"——它通过修改、隐藏或扰动数据中的"个人可识别信息(PII)“,让数据"既能用,又不会暴露具体的人”。解释匿名化的核心概念(比如k-匿名、差分隐私)、演示匿名化的实际操作(用Python处理真实数据)、探讨合规与效能的平衡策略。
2025-09-12 20:31:10
629
原创 AI应用架构师带你搭建企业AI治理体系的秘诀
各位技术同仁,当我们站在2024年的门槛回望,AI技术的发展早已超越了单纯的技术范畴,成为驱动企业数字化转型的核心引擎。从ChatGPT引爆的生成式AI革命,到各行各业大模型应用的遍地开花,我们正经历着前所未有的技术变革。这些场景并非危言耸听,而是正在全球范围内不断上演的真实案例。当AI技术从实验室走向大规模商业应用,从辅助工具升级为决策主体,企业面临的已不仅仅是技术选型问题,更是关乎生存与可持续发展的战略命题。它不是束缚创新的枷锁,而是保障AI技术安全、可控、可持续发展的"导航系统"与"安全网"。
2025-09-12 18:54:00
453
原创 AI原生NLP应用:如何提升模型推理速度?
在AI原生NLP应用(如实时聊天机器人、语义搜索、智能文档助手)中,推理速度是决定用户体验和商业价值的核心指标。想象一下:当用户发送一条消息后,需要等待5秒才能得到回复,这样的应用注定无法留存用户;而如果能将延迟降低到500毫秒以内,就能带来丝滑的交互体验。
2025-09-12 17:16:50
905
原创 大数据时代的数据溯源:原理、技术与应用全解析
根据W3C(万维网联盟)的定义:数据溯源(Data Provenance)是描述数据生命周期中**来源(Origin)、迁移(Migration)、变换(Transformation)和上下文(Context)**的过程。Where:数据从哪里来?(比如“这条用户评论来自APP的评论区”);How:数据被如何处理?(比如“这条评论被过滤了敏感词,然后存入了数据库”);Who:数据被谁使用?(比如“这条评论被产品团队用来分析用户满意度”)。数据溯源不是“事后补救”,而是“事前预防”。
2025-09-12 15:39:43
533
原创 提示工程架构师:在AI与提示架构创新中开拓进取
想象一下,你正站在一个巨大的数字魔法世界的门口。在这个世界里,语言就是神奇的咒语,能够驱使强大的魔法精灵——人工智能为你实现各种奇妙的事情。比如,你只需说出一句简单的话,就能让精灵瞬间创作出一首优美的诗歌,或是为你规划出一份详细的旅行攻略,甚至能帮你解决复杂的数学难题。而在这个魔法世界中,有一种特殊的职业,他们就像是魔法咒语的大师,能够巧妙地编织出最精准、最有效的语言指令,引导这些人工智能精灵发挥出最大的潜力。这个职业,就是提示工程架构师。曾经有一位提示工程架构师,接到了一个看似不可能的任务。
2025-09-12 14:17:46
760
原创 Agentic AI技术展示:提示工程架构师的技术前沿
你一定有过这样的经历:用ChatGPT写单轮文案很顺手,但让它完成「调研2024年AIAgent最新进展并生成结构化报告」这样的复杂任务时,结果总是差强人意——要么漏了关键文献,要么结构混乱,要么不会调用工具补充信息。这不是你的Prompt写得不好,而是传统Prompt工程的「静态、单轮、无协作」特性,已经无法满足Agentic AI(智能体AI)的动态需求。Agentic AI是一种能「自主分解任务、调用工具、记忆状态、迭代优化」的智能系统,比如AutoGPT、GPTs、企业内部的智能运营Agent。
2025-09-12 12:40:35
1015
原创 揭秘行业内幕!AI应用架构师优化AI模型训练效率的真相
本文全面探讨了AI应用架构师优化AI模型训练效率的关键技术和方法。从选择合适的模型架构、精细的数据预处理,到充分利用硬件资源、实施分布式训练以及科学的超参数调优,每一个环节都对提升训练效率起着重要作用。通过对比优化前后的训练时间和模型性能,验证了这些方法的有效性。同时,分析了性能瓶颈,提出了优化方向和最佳实践,总结了常见问题及解决方案,并对未来的技术趋势和扩展方向进行了展望。掌握这些技巧,读者能够在AI模型训练中显著提高效率,降低成本,为开发更强大的AI应用奠定坚实基础。
2025-09-12 11:03:29
753
原创 OLAP技术解析:数据立方体在大数据分析中的核心地位
小明是个爱动脑筋的小朋友,暑假里在小区门口卖柠檬水。周一:小区门口,卖了10杯,每杯5元,总收入50元;周二:公园,卖了15杯,每杯5元,总收入75元;周三:小区门口,卖了8杯,每杯5元,总收入40元;一周后,小明想知道:“我这周的总销售额是多少?”“哪一天卖得最好?”“小区门口和公园哪个地方更赚钱?这些问题很简单,只要把日记里的数字加一加、比一比就能回答。“草莓味柠檬水在周末下午的公园销售额是多少?“原味柠檬水在小区门口的周销售额比上周增长了多少?
2025-09-12 09:41:33
923
原创 《深度探讨:AI应用架构师为企业元宇宙架构设计赋能》
当企业试图拥抱元宇宙时,往往会陷入**“重体验、轻智能”**的陷阱:虚拟场景徒有其表,无法理解用户意图;数字孪生模型与物理系统脱节,无法提供决策支持;虚拟人交互生硬,难以满足个性化需求。这些问题的核心在于——元宇宙不是“虚拟场景的堆砌”,而是“智能系统的延伸”,缺乏AI赋能的企业元宇宙,本质上只是“数字玩具”,无法真正服务于业务增长。业务目标:提升产品展示效率,增加用户互动率,收集用户行为数据。目标用户:C端客户(想了解产品的消费者)、B端销售(想通过虚拟展厅演示产品)。核心场景。
2025-09-12 03:18:04
1023
原创 AI偏见缓解实战:10个你必须知道的技巧
AI偏见不是技术问题,而是人类社会偏见的映射。我们无法用一行代码“解决”所有偏见,但可以通过全流程的技巧+跨学科的协作+政策的约束,将偏见降到最低。作为AI从业者,我们的责任不仅是“让模型更准确”,更是“让模型更公平”——因为技术的价值,在于让每个人都能平等地享受它的红利。
2025-09-12 01:56:12
672
原创 AI应用架构师亲测:智能风险评估平台的离线批处理vs实时流处理架构选择
维度离线批处理实时流处理核心目标深度挖掘历史规律快速响应当前事件数据类型静态/历史数据(批量导入)动态/流数据(实时产生)延迟要求小时/天级毫秒/秒级处理能力高吞吐量(TB级)高并发(10万+ QPS)典型场景信用评分模型训练、历史风险报告交易欺诈检测、实时额度调整graph TDA[开始] --> B{需求类型?B -->|实时决策(如欺诈检测)| C[选实时流处理]B -->|深度分析(如模型训练)| D[选离线批处理]C --> E{数据特征?
2025-09-12 00:24:01
908
原创 边缘AI部署实战:架构师手把手教你优化模型性能
加载训练好的YOLOv8n模型# 定义剪枝函数:对所有Conv2d层剪掉50%的输入通道# 结构化剪枝:剪掉输入通道的50%# 移除剪枝的重参数化(将剪枝后的权重固定)# 执行剪枝# 学生模型与真实标签的交叉熵损失# 教师模型与学生模型的KL散度损失(温度软化)# 总损失边缘AI部署的核心是“理解硬件,优化模型”——用模型压缩减少大小,用算子优化提升效率,用推理引擎释放算力。最终的目标,是让AI模型在边缘设备上“跑得动、跑得稳、跑得省。
2025-09-11 22:46:50
712
原创 2025年企业算力平台建设:AI应用架构师需要掌握的5个工具
本文将聚焦2025年企业算力平台建设的核心工具,结合AI应用的实际场景(训练、推理、数据处理),手把手教你用5个工具搭建一个可调度、可监控、可优化:算力资源的“操作系统”,管理容器化的AI任务;Kubeflow:机器学习工作流引擎,整合训练、调参、部署的算力调度;:推理性能的“加速器”,提升模型推理的算力利用率;:算力监控的“仪表盘”,实时感知资源使用状态;StarRocks:数据处理的“算力桥梁”,将实时数据快速喂给AI模型。创建一个import kfp# 组件1:数据预处理(用CPU)
2025-09-11 21:14:47
610
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人