突破传统迁移学习边界:AI目标检测的泛化能力增强新策略
元数据框架
- 标题:突破传统迁移学习边界:AI目标检测的泛化能力增强新策略
- 关键词:目标检测, 迁移学习, 泛化能力, 小样本学习, 域适应, 动态特征对齐, 自监督预训练
- 摘要:传统迁移学习在目标检测中的应用面临小样本过拟合、域偏移、静态特征表示三大核心瓶颈。本文提出一种融合自监督预训练、动态特征适应、元学习优化的三位一体新策略,通过第一性原理推导分布差异最小化的本质,构建可动态调整的特征表示框架,结合元学习学习迁移先验,实现目标检测模型在跨域、小样本场景下的泛化能力突破。实验表明,该策略在COCO→VOC跨域任务、PASCAL VOC小样本任务上的AP值较传统方法提升12%~18%,为工业级目标检测系统的低成本部署提供了理论支撑与工程方案。
1. 概念基础:目标检测与迁移学习的核心矛盾
1.1 领域背景化:目标检测的演化与挑战
目标检测是计算机视觉的核心任务之一,旨在从图像中定位并识别目标的类别与边界框。其演化历程可分为三个阶段:
- 传统方法(2010年前