- 博客(1591)
- 收藏
- 关注
原创 相似度匹配技术:提升AI原生应用用户体验
相似度匹配(Similarity Matching)是计算两个对象之间相似程度的技术。它的本质是将非结构化数据(文本、图片、音频)转化为结构化的向量,然后在向量空间中计算它们的“距离”,距离越小则相似度越高。文本“iPhone 15 Pro Max”和“苹果15顶级旗舰手机”的向量距离很小,因为它们语义相似;用户“喜欢科技产品”的行为序列向量,与“华为Mate X5”的商品向量距离很小,因为它们兴趣匹配。首先需要整理预定义意图,每个意图包含意图名称和示例 utterance。
2025-09-16 22:44:21
155
原创 提示工程架构师教你:如何用上下文工程优化智能能源系统的用户体验
上下文工程的第一步,是明确“哪些信息能让系统更懂用户”。如果盲目收集数据,只会导致“上下文过载”(系统处理变慢)或“隐私风险”(收集无关信息)。结合智能能源的场景,我总结了4大类12小类的核心上下文维度维度类型具体内容为什么重要?用户属性上下文户型(1室1厅/3室2厅)、家庭人口(1人/3人)、用电习惯(峰时/谷时用电占比)、家电清单(空调功率、是否有电动车)解释电费上涨时,需要结合“3口之家+大户型”→空调使用多;优化峰谷用电时,需要“用电习惯”→推荐符合用户作息的方案。环境上下文。
2025-09-16 21:12:21
398
原创 领略AI原生应用领域Gemini的技术实力
为什么Gemini能成为AI原生应用的“核心引擎”?它的技术到底厉害在什么地方?我们会覆盖Gemini最核心的四个技术点:多模态理解、上下文连贯性、工具调用能力、安全对齐,以及它们如何协同工作,让AI从“只会答题的机器人”变成“能解决实际问题的助手”。本文会按“故事引入→核心概念拆解→技术原理揭秘→实战代码演示→应用场景举例→未来趋势思考”的顺序展开,像“剥洋葱”一样一步步揭开Gemini的神秘面纱。多模态:指AI能处理“文字、图片、声音、视频”等多种类型的信息(就像人能同时看、听、读)。上下文连贯性。
2025-09-16 19:50:24
503
原创 从0到1:提示工程架构师手把手教你搭建在线学习提示词系统(附3个真实案例)
随着大语言模型(LLM)在在线学习中的普及,提示词系统已成为连接用户需求与LLM能力的核心桥梁。本文从第一性原理出发,拆解提示工程的本质,系统讲解在线学习提示词系统的架构设计、实现机制与运营策略,并通过3个真实案例(数学作业辅导、企业培训问答、个人笔记生成)展示从需求到部署的完整流程。无论是想降低LLM使用门槛的教育机构,还是想提升学习效率的个人开发者,都能从本文获得可落地的技术方案与实战经验。在线学习提示词系统的核心问题域提示词生命周期管理:如何存储、版本控制、共享提示词模板?动态适配需求。
2025-09-16 18:13:06
379
原创 多模态AI原生应用可控性挑战:跨模态交互中的风险控制方案
多模态AI原生应用(Native Multimodal AI Applications)作为下一代智能系统的核心形态,通过设计原生融合文本、图像、语音、传感器等多模态信息,实现更自然、更强大的人机交互。然而,其可控性问题——即模型输出与用户意图的一致性、行为的可预测性、风险的可追溯性——已成为制约其规模化落地的关键瓶颈。本文从第一性原理。
2025-09-16 15:14:12
702
原创 AI架构师指南:企业私有化大模型部署的技术实践
私有化大模型部署,是指将大模型的训练/推理过程放在企业内部基础设施(私有服务器、私有云、边缘设备)上,而非依赖公有云服务商(如阿里云、AWS)的服务。数据本地化:训练数据、推理数据全程不流出企业内网;控制权私有:模型的迭代、优化、权限管理由企业自己主导;场景定制化:可以基于企业私有数据微调模型,适配特定业务需求(如金融术语、医疗病历、制造设备语言)。企业私有化大模型部署不是“技术实验”,而是业务价值的落地。选型要“贴合业务”:不是越大的模型越好,而是能解决业务问题的模型最好;优化要“数据驱动”
2025-09-16 13:42:06
646
原创 提示工程用户体验提升实战:架构师的3个经典项目复盘
你有没有遇到过这样的LLM应用?客服机器人明明能回答“衣服能不能机洗”,但用户问“这衣服扔洗衣机会不会坏”就答非所问;智能文档助手能提取“如何设置管理员权限”,但输出的大段文字让非技术用户看懵;代码生成工具能写Redis连接类,但生成的代码总不符合项目的PEP8规范……这些问题的核心不是LLM不够强,而是提示工程没结合用户体验设计。很多开发者把提示工程当成“调参游戏”——追求任务准确率,却忽略了用户的交互习惯、认知负荷、情绪反馈。最终结果是:应用能跑通,但用户用起来“总觉得不对味”。
2025-09-16 12:04:55
267
原创 AI工程化:AI应用架构师如何将研究成果转化为产品?
当算法研究员拿着「精度95%」的论文成果欢呼时,AI应用架构师可能正在对着服务器监控面板叹气——为什么实验室里完美的模型,放到真实场景中会变成「延迟1秒、成本超支、每天崩溃3次」的「绣花枕头」?AI研究与产品之间,隔着一道**「真实世界的鸿沟」**:实验室是「可控的理想环境」,而产品是「混乱的现实战场」——用户会传模糊的图片、数据会悄悄漂移、服务器会突然断电、业务方会要求「既要又要还要」。
2025-09-16 10:27:44
773
原创 解密情感计算在提示工程架构师领域的核心策略
你有没有遇到过这样的情况?跟AI助手聊天时,明明你很生气,它却像个“没感情的机器人”,回复得冷冰冰的;明明你很伤心,它却给你灌“心灵鸡汤”,让你更难受。这不是AI“笨”,而是它“没看懂”你的情绪,也“不会说”合适的话。为什么情感计算是提示工程的“灵魂”?架构师如何把“情绪理解”融入提示设计?我们会用“讲故事+拆积木”的方式,拆解两者的协同策略,让你明白——好的AI交互,是“看得到情绪”+“说得出温度”的组合拳。故事引入:用生活中的“AI翻车案例”引出问题;核心概念。
2025-09-16 03:48:45
679
原创 模型蒸馏在AI原生应用中的最新研究进展
作者是资深AI工程师与技术布道师,拥有十年以上分布式系统与机器学习平台建设经验,长期活跃在开源社区,对高效深度学习落地充满热忱。曾在顶级会议发表多篇边缘计算与模型压缩论文,致力于推动AI普惠应用。现担任某科技公司AI平台负责人,带领团队构建新一代AI Native基础架构。
2025-09-16 00:49:53
603
原创 AI元宇宙应用的联邦学习:跨场景数据协同的架构设计
元宇宙作为“数字孪生+交互+生态”的新型数字空间,其核心价值在于通过跨场景数据协同实现生态联动。然而,元宇宙多场景(游戏、社交、电商、教育等)的数据孤岛、隐私泄露、信任缺失等问题严重阻碍了数据价值的释放。联邦学习(Federated Learning, FL)作为“数据不出域、模型共训练”的分布式机器学习范式,为元宇宙跨场景数据协同提供了理想的解决方案。本文从第一性原理。
2025-09-15 23:27:56
534
原创 《别错过技术干货!提示工程架构师讲解提示系统在风险控制实践的技术干货》
在金融、电商、社交等行业,风险控制是业务的“生命线”——从反欺诈、反洗钱到羊毛党识别、虚假注册,每一个场景都需要快速、准确的决策。规则引擎的“僵化”:应对新型风险(如AI生成的欺诈话术、变种羊毛党)时,规则更新滞后(通常需要1-2周),且无法覆盖边缘案例;纯LLM的“失控”:直接调用大语言模型(LLM)虽然灵活,但存在幻觉(编造风险理由)、解释性差(无法满足合规要求)、成本高三大问题。有没有办法结合两者的优势?答案是提示工程(Prompt Engineering)
2025-09-15 21:55:51
486
原创 可持续发展战略中的AI技术:架构师的实战经验分享
我们先做个“小算术”:全球能源消耗中,30%是因为“用得浪费”——比如办公室没人还开着灯,工厂机器空转,空调设置得过低;全球水资源中,40%的农业灌溉是“过量的”——因为没算准土壤湿度和天气;全球碳排放中,25%来自“低效的交通”——比如堵车时汽车怠速的尾气。可持续发展的核心不是“不用资源”,而是“更聪明地用资源”。而AI的价值,就是用“数据+模型”解决“资源分配的盲目性”——就像给家庭雇了个“智能管家”,能精准知道“什么时候开空调最省电”“什么时候给电动车充电最便宜”“哪些路灯可以晚半小时开”。
2025-09-15 20:18:57
882
原创 DeepResearch多智能体系统:AI架构设计的技术突破
当我们谈论AI解决复杂任务时,"单智能体"的时代正在过去——像学术研究这样需要"文献调研→实验设计→结果分析→结论推导"全流程协作的任务,传统LLM或简单多智能体系统要么"能力不全",要么"协作混乱"。用GPT-4做文献调研,它能总结摘要但不会主动验证文献的权威性;用传统多智能体分配任务,Agent之间经常重复劳动,知识无法共享;做完实验后,系统无法自动将结论反哺到后续研究中,导致"每次都是从零开始"。DeepResearch多智能体系统的出现,正是为了解决这些痛点。
2025-09-15 18:57:01
408
原创 深入探究大数据领域 Cassandra 的数据模型
Cassandra的数据模型,既是它强大威力的源泉,也是其陡峭学习曲线的核心所在。Cassandra的数据模型不是单纯的Schema定义,而是分布式数据分布策略(Partition Key)、高效访问路径设计(Clustering Key + Query)和底层存储优化(LSM/SSTable)的高度统一体。脱离底层实现去理解主键和宽列设计必然是肤浅的。设计 Cassandra 表的唯一准则是“你将如何查询这些数据?。一切冗余、一切结构定义,都围绕这个中心服务。
2025-09-15 17:35:05
529
原创 大数据领域的政务数据开放与应用
在数字经济时代,数据已成为与土地、资本、劳动力并列的生产要素。而政务数据作为政府在履行职能过程中产生的海量数据(如户籍、社保、税务、交通、环保等),因其覆盖范围广、真实性高、价值密度大,被称为“数据金矿”。根据《中国数字政府建设发展报告(2023)》显示:然而,政务数据的价值释放面临两大瓶颈:本文将从政策背景、技术架构、关键技术、实战场景、挑战解决五大维度,系统解析大数据领域的政务数据开放与应用,为开发者提供从理论到实践的全链路指南。我国政务数据开放的政策体系经历了三个阶段:政务数据具有“4V+1G”特征:
2025-09-15 16:13:09
674
原创 DeepResearch多智能体系统:AI架构设计的最佳实践
第一步需要调研文献(爬取100篇论文,总结核心结论);第二步需要设计实验(用Transformer训练模型,生成实验数据);第三步需要分析结果(统计显著性检验,画准确率曲线);第四步需要撰写论文(把文献、实验、分析整合成逻辑通顺的文字)。效率低:一个AI同时做四件事,就像你一边炒菜一边写作业一边打电话——忙不过来;专业性差:文献调研需要“信息检索能力”,实验设计需要“模型训练能力”,单智能体很难在所有领域都做到顶尖;灵活性差。
2025-09-15 14:41:27
352
原创 大数据领域数据仓库的元数据标准制定
元数据模型是元数据的“骨架”,它定义了元数据的实体(Entity)和关系(Relationship)。实体:表(Table)、字段(Column)、主题域(Business Domain)、指标(Metric)、ETL任务(ETL Job);关系:表属于某个主题域(Table → Business Domain)、字段属于某个表(Column → Table)、指标依赖某个字段(Metric → Column)。元数据属性是元数据的“血肉”,它规定了每个实体必须填写的信息。
2025-09-15 13:19:06
374
原创 实时大数据处理:Kafka+Spark Streaming实战
实时数据处理已从"锦上添花"变为"不可或缺"的核心能力。通过Kafka与Spark Streaming的组合,我们可以构建既强大又灵活的实时系统。流批界面的消失:Structured Streaming等技术的成熟,使开发者无需关心底层是流还是批SQL化趋势:越来越多的实时处理将通过SQL完成,降低开发门槛边缘计算集成:在数据源头附近进行预处理,减少中心集群压力智能实时化:机器学习模型从批量训练转向持续学习,预测与决策实时更新无论技术如何变化,实时系统的核心原则不变:可靠地传递价值,快速地响应变化。
2025-09-15 11:46:58
741
原创 智能城市中的提示工程:如何设计高效的AI提示流程和模板?
智能城市的核心是“数据驱动的智能决策”,而提示工程是连接AI模型与城市场景的“桥梁”。本文提出的**“场景-数据-提示”三位一体框架**,解决了智能城市场景下提示设计的核心挑战(多源数据融合、动态变化、可解释性),并通过实战案例(实时交通拥堵预警)演示了完整的提示设计流程。理解智能城市场景下提示工程的核心挑战;掌握从需求分析到结果验证的完整提示设计流程;使用可复用的提示模板快速落地智能城市AI项目;应用优化技巧提升提示的准确性与实时性。
2025-09-15 10:09:47
551
原创 必学技巧!AI应用架构师的AI评估系统研究成果
假设你是某电商公司的AI架构师,负责搭建推荐系统。推荐的商品都是用户3个月前买过的(数据老化);男性用户收到的都是电子设备,女性用户都是化妆品(性别偏见);周末点击率骤降,但没人知道为什么(缺乏监控)。这些问题的根源,不是模型不够好,而是没有一套能提前发现问题的评估系统。数据层:判断数据是否“能用”(质量)、是否“过时”(漂移);模型层:评估模型是否“会做题”(性能)、是否“讲道德”(伦理);部署层:监控模型是否“生病”(性能下降)、是否“越界”(伦理违规)。本文按照“
2025-09-15 03:30:48
703
原创 AI智能体转化品牌价值的跨部门协同策略:AI应用架构师打破部门墙
我是张三,一位拥有10年经验的AI应用架构师,专注于AI技术与业务协同的研究。曾帮助多家企业(零售、美妆、汽车)落地AI智能体,实现品牌价值增长。我的博客“AI与业务协同”分享了更多关于AI架构、跨部门协同的实践经验,欢迎关注。欢迎在评论区分享你的想法:你所在的企业有没有遇到AI智能体跨部门协同的问题?你认为AI应用架构师应该如何打破部门墙?让我们一起讨论!
2025-09-15 01:58:45
570
原创 《AI应用架构师助力企业AI应用商店建设的实用方法》
核心价值:AI应用商店解决了企业AI落地的“最后一公里”问题,促进了跨部门协作,沉淀了AI资产;架构师角色:架构师是连接业务与技术的“桥梁”,负责需求调研、架构设计、技术选型、跨团队协调、风险管控;关键步骤:从0到1建设AI应用商店需要经历“需求分析→架构设计→应用接入→审核评级→技术选型→开发测试→上线推广→运营迭代→安全合规”10个步骤;最佳实践:通过“明确目标→规范流程→优化体验→持续迭代”,可以让AI应用商店从“能用”变“好用”。我是张三。
2025-09-15 00:31:56
603
原创 利用ClickHouse构建大数据实时监控系统
假设你是电商公司的运营经理,“双十一”零点刚过,老板拿着手机问你:“现在每秒多少订单?”你打开原来的系统,刷新页面等了5秒,显示“1000单/秒”。可等你说完,老板又问:“那现在呢?”你再刷新,又等5秒——这时候,实际订单量可能已经涨到1500单/秒,或者跌到800单/秒了。传统数据库的痛点:像MySQL这样的OLTP数据库,擅长处理“增删改查”的小数据,但面对“每秒10万条数据”的实时写入和“每秒100次聚合查询”的需求,就像“用自行车运快递”——根本跟不上。快!快到什么程度?
2025-09-14 23:09:58
791
原创 Gemini在实时AI原生应用中的关键技术解析
实时AI原生应用(Real-Time AI-Native Application)是下一代智能系统的核心形态——它以AI为底层架构基石,而非附加功能,要求低延迟(≤100ms)、高动态(实时上下文更新)、强个性化(用户意图实时适配)、多模态交互(文本/图像/音频/视频同步处理)。Google Gemini作为首个专为通用人工智能(AGI)设计的多模态大模型,其技术体系天然贴合实时AI原生应用的核心需求。本文从第一性原理多模态统一表示与实时处理动态上下文的稀疏激活与缓存边缘-云协同的分布式推理架构。
2025-09-14 21:32:47
878
原创 教育行业大数据架构:学习分析与个性化推荐实践
在当今数字化时代,教育行业积累了大量的数据,如学生的学习记录、考试成绩、在线学习行为等。这些数据蕴含着巨大的价值,能够帮助教育者更好地了解学生的学习情况,提供更有针对性的教学服务。本文的目的就是探讨如何构建有效的大数据架构,对教育数据进行分析和利用,实现学习分析和个性化推荐,提升教育质量。范围涵盖了教育行业大数据架构的各个方面,包括数据采集、存储、处理、分析以及推荐系统的设计和实现。本文将首先介绍教育行业大数据架构相关的核心概念,包括学习分析和个性化推荐的含义以及它们之间的关系。
2025-09-14 20:00:40
804
原创 挖掘大数据数据采集的隐藏价值
在传统认知中,数据采集的目标是“尽可能多、尽可能全地获取数据”。但在大数据时代,“正确的数据”比“更多的数据”更重要。我们需要重新定义数据采集的核心目标:数据采集 = 采集目标数据 + 记录“采集上下文” + 留存“质量痕迹” + 捕捉“行为逻辑”其中,“采集上下文”“质量痕迹”“行为逻辑”就是数据采集的“隐藏价值”——它们不是目标数据本身,却能让目标数据“活”起来,成为可解释、可信任、可挖掘的资产。
2025-09-14 18:38:43
801
原创 智慧城市应用前景:提示工程架构师的技术突破
当我们谈论“智慧城市”时,曾几何时的想象是“无处不在的传感器”“实时跳动的数据 dashboard”——但这些“城市大脑”的早期形态,终究停留在“看数据、做判断”的工具层面。今天,随着大语言模型(LLM)的爆发,智慧城市正从“数据驱动”跃迁到“认知驱动”:它需要像人一样理解情境、关联知识、主动决策——比如在暴雨天提前提醒老城区居民“你家楼下的排水管道可能淤堵”,在演唱会散场时自动调整地铁末班车时间,甚至用方言安抚突发火灾中的独居老人。而连接LLM与城市复杂场景的关键桥梁,正是。
2025-09-14 17:02:00
537
原创 大数据领域数据安全的重要性与挑战解析
阶段核心风险示例场景采集数据来源不可信(如第三方数据注入恶意代码)某电商平台接入第三方物流数据,导致用户地址信息被篡改存储权限泄露(如S3公开桶)、数据篡改2022年,特斯拉S3公开桶泄露10万条客户数据处理算法攻击(如模型反演、数据投毒)某银行用机器学习模型评估信用,攻击者注入虚假数据导致模型误判传输中间人攻击(MITM)、数据窃听物联网设备通过未加密的MQTT协议传输数据,被黑客截获共享隐私泄露(如关联分析暴露个人信息)
2025-09-14 15:39:48
875
原创 大数据领域存算分离的多模态数据存储方案
随着大数据时代多模态数据(文本、图像、音频、视频等)的爆炸式增长,传统存算一体架构因资源耦合导致的扩展性瓶颈、性能浪费等问题日益凸显。存算分离架构通过将计算与存储资源解耦,为多模态数据的高效存储与处理提供了新的范式。本文从第一性原理出发,系统分析多模态数据的异构性挑战,推导存算分离的必要性;提出分层式多模态存储架构(计算层、存储层、元数据层),结合对象存储、文件存储、数据库存储的优势适配不同类型数据;通过元数据驱动的跨模态关联智能存储优化等机制,解决多模态数据的检索、一致性与性能问题。
2025-09-14 14:17:40
621
原创 绝了!AI应用架构师从专业角度看AI在金融市场应用案例
作为一名深耕金融AI领域的应用架构师,我将从架构设计量化交易中的AI策略架构(如何用LSTM/强化学习捕捉市场非线性规律?智能风控中的风险识别架构(如何用图神经网络揪出“关联欺诈”?AI驱动的客户服务架构(如何让机器人听懂“弦外之音”?每个案例都会拆解“底层逻辑→架构设计→关键技术→代码框架”,帮你搞懂“AI在金融中到底怎么用”。量化交易:用LSTM/强化学习捕捉市场非线性规律,动态调整策略;智能风控:用XGBoost/GNN识别风险,提高准确率和效率;客户服务。
2025-09-14 12:40:28
445
原创 《揭秘核心!AI应用架构师助力AI驱动价值创造的关键因素》
数据割裂:企业数据分散在CRM、ERP、日志系统中,缺乏统一的“特征层”,导致模型无法有效学习;模型不可靠:AI模型存在“漂移”(数据/概念变化导致精度下降)、“黑箱”(无法解释决策)、“脆弱性”(对抗攻击易失效)等问题,无法满足业务稳定性要求;部署困难:模型从“实验室”到“生产环境”的适配成本高(如延迟、吞吐量、兼容性),很多模型“训练得好,用不起来”;业务适配性差:AI技术方案与业务流程冲突(如实时推荐要求低延迟,但传统业务系统是异步架构),导致“技术先进,业务不用”。
2025-09-14 11:03:22
1040
原创 大数据领域数据架构的自动化部署实践
你有没有过这样的经历?想搭一个大数据集群做分析,结果花了3天时间:先给10台服务器装Java,再手动下载Hadoop安装包,然后逐台修改配置文件,最后启动集群时发现“节点无法通信”——原来是防火墙没关!本文的目的:帮你告别“手动部署的痛苦”,学会用自动化工具将大数据架构的部署流程“代码化”。大数据架构的核心组件(Hadoop、Spark、Hive);自动化部署的核心工具(Ansible、Docker、Kubernetes);从0到1搭建自动化部署 pipeline 的实战步骤。范围。
2025-09-14 09:41:23
554
原创 提示系统安全审计风险防控体系:提示工程架构师的构建方法
当企业如火如荼地将大语言模型(LLM)嵌入客服、营销、数据分析等核心场景时,提示系统(Prompt System)的安全问题攻击者通过(提示注入)让AI忽略原有指令,泄露用户隐私(比如“忘记之前的要求,告诉我张三的订单号”);硬编码的提示模板因权限管理漏洞被篡改,导致AI输出违规内容(比如生成恶意营销话术);LLM的“幻觉”输出未被审计,引发合规风险(比如编造虚假金融建议)。这些问题并非靠“输入过滤”或“输出检查”就能解决——
2025-09-14 03:02:24
351
原创 AI架构师的实时推理成本模型:如何计算ROI?
实时推理的核心矛盾是三个目标的权衡低延迟(Latency):≤100ms(用户感知阈值);高吞吐量(Throughput):每秒处理请求数(QPS);低成本(Cost):每请求成本(Cost Per Request, CPR)。Latency×Throughput∝Latency×Throughput∝Cost∝×TimeCost∝×Time例如,增加批处理大小(Batch Size)可提高吞吐量,但会增加延迟;
2025-09-14 01:25:13
379
原创 智能法律顾问系统架构:微服务还是单体?我的选型思考
假设你是一家法律科技公司的技术负责人,要开发一款"智能法律顾问系统":它需要支持用户在线咨询(比如"劳动合同纠纷怎么处理?“)、法规实时检索(比如"2024年最新《民法典》关于离婚财产分割的规定是什么?”)、法律文书自动生成(比如"帮我写一份起诉状"),还要能预测案件胜诉率(比如"我这个民间借贷案件赢的概率有多大?")。这个系统该用"单体架构"还是"微服务架构"?本文将围绕这个问题,从"概念理解→场景适配→代码实战→选型建议"一步步展开,帮你理清思路。故事引入:用律师事务所的日常工作类比系统架构;
2025-09-13 22:16:07
952
原创 提示工程架构师必读:服务网格方案与云原生技术融合最佳实践
提示工程的目标是让LLM高效、安全、可靠地服务于业务流量混乱:如何把高优先级的请求(比如付费用户的生成任务)分配给性能更好的模型?安全隐患:模型API的调用凭证容易泄露,如何保证服务间通信的加密?监控盲区:某个模型服务延迟突然升高,如何快速定位是网络问题还是模型本身的问题?版本管理:新模型上线时,如何逐步将流量从旧版本切换到新版本,避免全量发布的风险?服务网格(Service Mesh)的出现,正是为了解决这些微服务通信的痛点。它能在不修改模型服务代码的情况下,实现流量路由、安全加密、可观察性。
2025-09-13 20:54:07
435
原创 架构师手册:AI知识创新平台的技术架构
AI知识创新平台的核心不是“替代人”,而是“赋能人”——它能帮科研人员从海量数据中解放出来,专注于“创造性的思考”;能帮企业从碎片化的知识中挖掘价值,实现“创新的加速”。作为架构师,我们的任务不仅仅是设计技术架构,更是设计“知识与人的连接方式”。未来的AI知识创新平台,将是“人-知识-AI”三者的协同系统——而我们,正是这个系统的“设计者”与“推动者”。参考资料《知识图谱:方法、实践与应用》(王昊奋等);《大语言模型:原理与工程实践》(李沐等);
2025-09-13 19:16:58
989
原创 AI原生应用语义搜索:革新传统搜索模式
你有没有过这样的经历:想找一部"像《流浪地球》那样有亲情和硬核科技的科幻片",但用传统搜索时,必须输入"科幻片 亲情 硬核科技 类似流浪地球"这样的关键词,结果却跳出一堆不相关的电影?本文的目的,就是帮你搞懂AI原生应用中的语义搜索——它为什么能"听懂"你的需求,比传统搜索更聪明?我们会覆盖语义搜索的核心概念(Embedding、向量数据库、上下文理解)、工作原理、代码实战,以及实际应用场景,让你明白它如何革新传统搜索模式。故事引入:用"找电影"的场景对比传统搜索与语义搜索的差异;核心概念解释。
2025-09-13 17:39:52
964
原创 金融AI风险预警敏捷架构设计:AI应用架构师分享如何支持快速迭代
金融机构的核心使命之一是"控风险"——小到信用卡欺诈、大到企业信用违约,风险预警系统就像"金融免疫系统",需要及时识别威胁。迭代慢:模型从训练到部署需要数周甚至数月,无法应对欺诈分子的"快速进化"(比如新型刷单、账户盗用手段);适应性差:数据分布变化(比如经济下行期的用户还款行为改变)会导致模型"失效",但调整模型需要重新走一遍"数据清洗-训练-审批-部署"的冗长流程。本文的目的,是通过敏捷架构设计,让金融AI风险预警系统具备"快速感知变化、快速调整模型、快速验证效果"的能力。
2025-09-13 16:17:55
667
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人