- 博客(27)
- 收藏
- 关注
原创 2025年主流编程语言全面分析与学习指南
对于编程新手或考虑转换技术方向的专业人士来说,选择合适的编程语言是至关重要的第一步。2025年的编程语言格局持续演变,一些语言势头强劲,而其他语言则保持着稳定地位。本指南深入分析各大编程语言的优势、局限性和理想应用场景,帮助您做出明智的选择。根据最新行业调查,Python、JavaScript和Java仍然占据主导地位,而Rust和Go等语言在特定领域继续获得显著发展。语言选择应与您的具体目标、项目需求和目标行业领域保持一致。
2025-06-02 20:41:56
828
原创 Android高级开发第四篇 - JNI性能优化技巧和高级调试方法
在前面的文章中,我们掌握了JNI的基础知识、参数传递、异常处理和线程安全。现在是时候关注JNI开发中的性能问题了。性能优化往往是区分初级开发者和高级开发者的关键技能。本文将从实际角度出发,教你如何识别性能瓶颈、应用优化技巧,以及使用高级调试工具来分析和解决问题。
2025-06-02 18:42:16
1263
原创 Android高级开发第三篇 - JNI异常处理与线程安全编程
Java异常传播到C代码:Java方法抛出异常,需要在C代码中检查和处理C代码中的异常传播到Java:C代码发现错误,需要抛出Java异常在多线程环境中,多个线程可能同时访问和修改相同的数据,导致数据不一致或程序崩溃。JNIEnv不是线程安全的:每个线程都有自己的JNIEnv指针全局引用的并发访问:多个线程访问同一个全局引用静态变量的并发修改:C代码中的静态变量被多个线程修改异常处理和线程安全是JNI开发中的核心技能。异常处理总是检查Java方法调用后的异常状态。
2025-06-02 18:33:14
881
原创 Android高级开发第二篇 - JNI 参数传递与 Java → C → Java 双向调用
在Android开发中,JNI (Java Native Interface) 是连接Java代码和本地C/C++代码的桥梁。通过JNI,我们可以利用C/C++的高性能特性来处理计算密集型任务,同时保持Java的跨平台优势。本文将深入探讨JNI参数传递机制以及Java和C之间的双向调用实现。
2025-05-29 16:09:59
1299
原创 Android高级开发第一篇 - JNI(初级入门篇)
本文介绍了Android JNI开发的初级入门知识。首先解释了JNI的概念及其应用场景,如调用高性能库、系统接口等。接着详细说明了开发环境准备和创建支持JNI的Android项目步骤。通过一个"Hello from C++"示例,分析了Java和C++代码的对应关系,包括函数命名规则、JNI关键语法等。文章还讲解了CMake构建脚本配置,并提供了常见问题排查方法。最后预告了后续将介绍JNI参数传递和双向调用等内容。适合有Java/Android基础但零JNI经验的开发者入门学习。
2025-05-29 16:04:44
661
原创 【深度学习基础】什么是注意力机制
注意力机制不仅是深度学习的核心技术,更是推动人工智能迈向通用化的关键。从Transformer的横空出世到多模态应用的遍地开花,它不断证明着“聚焦关键信息”这一朴素思想的强大生命力。随着技术的持续进化,注意力机制有望在更广阔的领域重塑人机交互的边界。
2025-02-17 14:07:21
980
原创 【深入探索-deepseek】高等数学与AI的因果关系
想象我们有一张二维图片,图片里有个点,它的位置用坐标((x, y))表示。在进行图像压缩的时候,我们发现那些比较大的奇异值对图像的主要信息影响大,小的奇异值影响小。所以就保留大的奇异值以及它们对应的那些向量(也就是奇异向量),把小的奇异值扔掉,这样就能在不怎么影响图像主要内容的情况下,减少图像的数据量,实现图像压缩。)是类别©出现的先验概率,简单说就是在没看到这张图像之前,我们根据以往经验认为这个类别出现的可能性。)代表迭代次数,每次按照这个公式更新参数,就希望损失函数的值越来越小,模型预测得越来越好。
2025-02-10 16:22:57
1263
原创 【Android开发AI实战】选择目标跟踪基于opencv实现——运动跟踪
OpenCV(Open Source Computer Vision Library)是一个基于 Apache2.0 许可(开源)发行的跨平台计算机视觉和机器学习软件库。它由一系列 C 函数和少量 C++ 类构成,同时提供了 Python、Ruby、MATLAB 等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。OpenCV 在 Android 开发中具有极高的应用价值,它提供了丰富的函数和工具,能够帮助开发者快速实现各种视觉功能,大大降低了开发成本和难度。
2025-02-09 14:32:01
1931
1
原创 【Android—OpenCV实战】实现霍夫圆检测针对沙盘交通灯信号检测
因其对规则几何形状的出色识别能力,成为圆形交通灯检测的首选方案。本文将手把手教你如何在Android平台基于OpenCV实现这一经典算法,并赋予其"看懂"红绿灯颜色的能力!在智能交通沙盘系统中,交通信号灯的精准识别是实现车辆智能调度的关键。传统图像处理方法中,霍夫圆检测的核心思想是将图像空间中的圆映射到三维参数空间。:仅处理图像上半部分交通灯区域。:结合不同dp值进行分层检测。:高斯模糊降噪(代码示例)
2025-02-09 12:37:58
999
原创 【Android开发AI实战】基于HyperLPR实现多个车牌矫正识别算法优化
在实际的车牌识别场景中,车牌的长度可能会因为拍摄角度、光照条件等因素而有所不同。为了确保识别的准确性和一致性,我们通常需要对车牌的长度进行限制。本文将展示如何在Android应用中通过HyperLPR库识别车牌,并对识别结果进行长度限制。通过本文的介绍,我们了解了如何在Android应用中使用HyperLPR库进行车牌识别,并对识别结果进行长度限制。通过对车牌长度的限制,我们可以确保识别的结果更加规范和一致。此外,我们还为不同类型的车牌添加了标签,使得识别结果更加直观。
2025-02-08 16:09:10
1468
原创 【Android开发AI实战】基于CNN混合YOLOV实现多车牌颜色区分且针对车牌进行矫正识别(含源码)
通过结合yolov与cnn以及opencv算法实现了高精度的车牌识别。如果以上内容有不足欢迎您的指出。三行代码实现文档智能校正。
2025-02-07 14:05:14
1806
原创 【OpenCV实战】基于 OpenCV 的多尺度与模板匹配目标跟踪设计与实现
来了来了还是我们可爱的鸡哥本文介绍了一种基于 OpenCV 的视频目标跟踪,该利用模板匹配技术和多尺度匹配算法,实现对视频中目标的实时跟踪。通过结合鼠标的交互操作和暂停功能,用户可以方便地选择跟踪目标,并在不同的播放状态中查看跟踪效果。文章详细描述了系统的原理、逻辑流程以及实现过程中所涉及的关键公式和逻辑图。本系统旨在实现对视频中目标的实时跟踪,适用于多种应用场景,如安全监控、体育比赛分析和自动驾驶等。目标选择:通过鼠标拖动选择感兴趣区域(ROI),作为模板。多尺度模板匹配。
2025-02-05 20:46:12
1716
原创 【OpenCV实战】混合运动跟踪算法的视频目标轨迹可视化系统设计与实现
本系统基于OpenCV框架,融合了经典跟踪算法与光流法,实现了视频目标跟踪与运动轨迹可视化。双重跟踪机制融合:CSRT提供稳定边界框,LK光流补充运动细节。动态轨迹衰减算法:实现运动趋势可视化。自适应帧率控制:平衡实时性与计算精度。交互式分析界面:支持ROI动态选择与暂停分析。
2025-02-05 12:42:23
1706
1
原创 【探索篇】探索部署离线AI在Android的实际体验
到2026年,70%的Android设备将配备专用AI处理器,离线AI的综合体验有望达到当前云端方案的92%。自适应压缩:根据设备性能动态调整模型复杂度(OPPO已发布相关专利)。硬件碎片化:不同SoC的NPU指令集差异导致25%-40%性能损耗。多模态融合:本地化的图文音多模态处理延迟仍高于云端方案37%。模型更新困境:需要用户主动下载更新包(平均更新率仅23%)。70%的Android设备将配备专用AI处理器。离线AI的综合体验有望达到当前云端方案的92%连续使用能耗对比(4000mAh电池)
2025-02-03 16:20:21
1310
5
原创 2025最新在线模型转换工具onnx转换ncnn,mnn,tengine等
2025年最新免费在线模型转换网址支持ncnn mnn tengine onnx 支持模型优化 量化
2025-02-02 21:31:47
5650
5
原创 【实战篇】Android安卓本地离线实现视频检测人脸—含源码
com.github.bifan-wei:FaceDetector:V1.0 是一个人脸识别项目,主要通过 Android 平台的相机采集图像数据,然后利用 FaceDetector 类进行人脸检测,最终将检测结果绘制在界面上。该项目主要包含两个核心文件:FaceDetectTextureView.java 和 IFaceRectView.java。
2025-02-02 13:56:13
1546
原创 【实战篇章】深入探讨:服务器如何响应前端请求及后端如何查看前端提交的数据
深入理解 HTTP/2 协议RESTful API 设计最佳实践GraphQL 与现代 API 开发服务端渲染(SSR)技术微服务架构中的通信模式fill:#333;color:#333;color:#333;fill:none;基础交互性能优化安全加固架构扩展云原生部署。
2025-02-01 15:14:44
1613
原创 《深入分析 TNN、MNN 和 NCNN:为不同硬件平台挑选最佳深度学习框架》
TNN 是腾讯开发的高效深度学习推理框架,专为移动端和嵌入式设备优化。特点:高性能:通过内存优化和多线程加速,适合多平台部署。多平台支持:支持 ARM、X86、NPU 等多种硬件平台。灵活性:支持多种深度学习框架和模型格式,如 Caffe、TensorFlow。
2025-02-01 14:29:42
4142
原创 【计算机视觉必杀技】三行代码实现文档智能校正(附完整代码)
本文提出的基于四点透视变换的文档图像校正方法,通过结合传统图像处理算法与几何变换理论,实现了高效的图像校正。实验结果表明,该方法在保证精度的同时具有较高的执行效率,为后续的 OCR 识别等任务奠定了良好的基础。本文提出了一种基于轮廓检测和四点透视变换的文档图像自动校正方法,通过实验验证,该方法能够有效恢复平面文档的正面视角,为后续的文字识别提供高质量的输入。透视变换是图像几何变换的一种,它通过四个已知点的映射来推算出变换矩阵,并实现从一个平面到另一个平面的图像映射。为目标图像中的点坐标,
2025-01-31 15:54:13
1442
原创 YOLOv5模型版本详解:n/s/m/l的区别与选型指南
YOLOv5是Ultralytics团队推出的高效目标检测模型,包含**Nano (n)、Small (s)、Medium (m)、Large (l)**四个主要版本。各版本通过调整网络深度与宽度,平衡检测精度与推理速度,满足不同硬件平台的部署需求。注:测试环境为NVIDIA T4 GPU,输入分辨率640x640,FP16精度3.1.1 通道数变化Focus层:检测头通道:计算影响:精度与速度的平衡关系图(图表/曲线图示)5.2 模型优化技巧5.2.1 量化压缩5.2.2 网络剪枝六、版本
2025-01-23 11:47:20
8146
原创 深入解析字符编码与数据格式:技术演进与应用实践
通过深入理解这些编码技术和数据格式的底层原理及应用场景,开发者可以做出更精准的技术决策,构建高效、可靠的信息系统。在实际项目中,建议建立编码规范文档,定期进行代码审计,确保字符处理和数据交换的准确性与安全性。采用"双字节可变长"设计,在GB2312的0xA1A1-0xF7FE范围外,使用0x8140-0xA0FE和0xA840-0xF9FF区域。早期的欧洲版Windows系统默认采用ISO-8859-1,直到现在某些遗留系统仍在使用。汉字"严"的Unicode码位是U+4E25
2025-01-23 11:16:11
1266
原创 Keilv5 的常用操作及如何提高代码效率
Keil v5 是嵌入式系统开发中一款非常流行的集成开发环境(IDE),它为开发者提供了一个高效、专业的工具集。对于初学者来说,可能会被其丰富的功能和界面所困惑。本文将从一个新手的视角出发,详细讲解 Keil v5 的常用操作,并分享一些提高代码效率的小技巧。
2025-01-22 12:48:49
708
原创 老鸟理解:Android 中 Handler 和 Thread.sleep 的区别及应用场景
工具适用场景Handler跨线程通信、主线程 UI 更新、延时任务、定时任务模拟延迟、线程休眠、间隔任务、简单倒计时、调试线程同步问题Handler:功能强大,适合多线程通信和复杂任务调度,尤其是在需要更新主线程 UI 的时候。:简单易用,适合线程控制和延迟操作,但在主线程中需要避免使用,以免导致阻塞。
2025-01-22 12:07:09
985
原创 一文帮你理清 Gradle 插件、Gradle、SDK 和 JDK 之间的关系
JDK(Java Development Kit)是开发 Java 应用所必需的工具包。它包含了编译 Java 程序所需的工具、类库以及 Java 运行时环境(JRE)。JVM(Java Virtual Machine):负责执行 Java 字节码。JRE(Java Runtime Environment):提供运行 Java 程序所需的类库和 JVM。JDK 工具:包括编译器javac,打包工具jar,调试器jdb等。Android 应用开发中的 Java 代码通常需要 JDK 来进行编译和运行。
2025-01-10 16:36:12
1500
原创 移植Android百度OCR:百度超轻量级中文OCR Android模型整合到自有工程中的问题与解决
解决百度OCR版本配置问题以及权限问题适配Android13新特性
2025-01-10 14:22:54
1482
原创 2025年百科荣创Android -- AI视觉检测模型集成--(包含源码)
本文汇集了多个 Android 平台上的计算机视觉与人工智能应用的实现案例,涵盖了YOLOv5 模型训练Android 开发模型合并与优化NDK 开发CMake 配置模型格式转换等技术。光学字符识别(OCR)技术利用人工智能和深度学习的进步,已经成为 Android 平台上的主流应用。OCR 能够将图像中的文字提取并转化为可编辑的文本,广泛应用于文档扫描、数字化书籍以及车牌识别等领域。本文将介绍如何在 Android 上集成 OCR 功能,具体使用PyddleOCR库进行图像文字识别。
2025-01-09 13:23:36
1464
Android本地人脸识别基于bifan-wei-Face/Detector:V1.0
2025-02-02
基于PaddlePaddle的人脸检测:Android本地化部署解决方案
2025-01-23
Android本地AI谷歌公用代码仓库功能整合(二维码识别,人体骨骼检测,多二维码识别,文字识别)更多功能等待你的发现
2025-01-10
2023年中银杯代码(自改)
2025-01-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人