OS 模块
随着深度学习项目变得越来越大、数据量越来越多、代码结构越来越复杂,你会越来越频繁地用到 os 模块来管理文件、目录、路径,以及进行一些基本的操作系统交互。虽然深度学习的核心在于模型构建和训练,但数据和模型的有效管理是项目成功的关键环节,而 os 模块为此提供了重要的工具。
在简单的入门级项目中,你可能只需要使用 pd.read_csv() 加载数据,而不需要直接操作文件路径。但是,当你开始处理图像数据集、自定义数据加载流程、保存和加载复杂的模型结构时,os 模块就会变得非常有用。
好的代码组织和有效的文件管理是大型深度学习项目的基石。os 模块是实现这些目标的重要组成部分。
import os
# os是系统内置模块,无需安装
获取当前工作目录的绝对路径
os.getcwd() # get current working directory 获取当前工作目录的绝对路径
获取当前工作目录下的文件列表
os.listdir() # list directory 获取当前工作目录下的文件列表
# 我们使用 r'' 原始字符串,这样就不需要写双反斜杠 \\,因为\会涉及到转义问题
path_a = r'C:\Users\YourUsername\Documents' # r''这个写法是写给python解释器看,他只会读取引号内的内容,不用在意r的存在会不会影响拼接
path_b = 'MyProjectData'
file = 'results.csv'
# 使用 os.path.join 将它们安全地拼接起来,os.path.join 会自动使用 Windows 的反斜杠 '\' 作为分隔符
file_path = os.path.join(path_a , path_b, file)
file_path
环境变量
# os.environ 表现得像一个字典,包含所有的环境变量
os.environ
# 使用 .items() 方法可以方便地同时获取变量名(键)和变量值,之前已经提过字典的items()方法,可以取出来键和值
# os.environ是可迭代对象
for variable_name, value in os.environ.items():
# 直接打印出变量名和对应的值
print(f"{variable_name}={value}")
# 你也可以选择性地打印总数
print(f"\n--- 总共检测到 {len(os.environ)} 个环境变量 ---")
目录树
os.walk() 是 Python os 模块中一个非常有用的函数,它用于遍历(或称“行走”)一个目录树。
核心功能:
os.walk(top, topdown=True, οnerrοr=None, followlinks=False) 会为一个目录树生成文件名。对于树中的每个目录(包括 top 目录本身),它会 yield(产生)一个包含三个元素的元组 (tuple):
(dirpath, dirnames, filenames)
1. dirpath: 一个字符串,表示当前正在访问的目录的路径。
2. dirnames: 一个列表(list),包含了 dirpath 目录下所有子目录的名称(不包括 . 和 ..)。
3. filenames: 一个列表(list),包含了 dirpath 目录下所有非目录文件的名称。
**示例目录结构 (Markdown形式):**
假设你的 `start_directory` (当前工作目录 `.`) 是 `my_project`,其结构如下:
```markdown
my_project/
├── data/
│ ├── processed/
│ └── raw/
│ └── data1.csv
├── src/
│ ├── models/
│ │ └── model_a.py
│ └── utils.py
├── main.py
└── README.md
```
**`os.walk` 的遍历顺序及输出 (模拟):**
*(注意:`dirnames` 和 `filenames` 的顺序可能因操作系统或文件系统而略有不同,但遍历的 *深度优先* 逻辑是一致的)*
```
--- 开始遍历目录: my_project ---
当前访问目录 (dirpath): my_project
子目录列表 (dirnames): ['data', 'src'] # <--- 列出第一层子目录
文件列表 (filenames): ['main.py', 'README.md']
当前访问目录 (dirpath): my_project/data # <--- 深入到 data
子目录列表 (dirnames): ['processed', 'raw'] # <--- 列出 data 下的子目录
文件列表 (filenames): []
当前访问目录 (dirpath): my_project/data/processed # <--- 深入到 processed
子目录列表 (dirnames): []
文件列表 (filenames): []
当前访问目录 (dirpath): my_project/data/raw # <--- 回溯到 data,然后深入到 raw
子目录列表 (dirnames): []
文件列表 (filenames): ['data1.csv']
当前访问目录 (dirpath): my_project/src # <--- 回溯到 my_project,然后深入到 src
子目录列表 (dirnames): ['models']
文件列表 (filenames): ['utils.py']
当前访问目录 (dirpath): my_project/src/models # <--- 深入到 models
子目录列表 (dirnames): []
文件列表 (filenames): ['model_a.py']
# 遍历结束
```
**总结:**
`os.walk` 会首先访问起始目录 (`my_project`),然后它会选择第一个子目录 (`data`) 并深入进去,访问 `data` 目录本身,然后继续深入它的子目录 (`processed` -> `raw`)。只有当 `data` 分支下的所有内容都被访问完毕后,它才会回到 `my_project` 这一层,去访问下一个子目录 (`src`),并对 `src` 分支重复深度优先的探索。
它不是按层级(先访问所有第一层,再访问所有第二层)进行的,而是按分支深度进行的。这种策略被称之为深度优先
import os
start_directory = os.getcwd() # 假设这个目录在当前工作目录下
print(f"--- 开始遍历目录: {start_directory} ---")
for dirpath, dirnames, filenames in os.walk(start_directory):
print(f" 当前访问目录 (dirpath): {dirpath}")
print(f" 子目录列表 (dirnames): {dirnames}")
print(f" 文件列表 (filenames): {filenames}")
# # 你可以在这里对文件进行操作,比如打印完整路径
# print(" 文件完整路径:")
# for filename in filenames:
# full_path = os.path.join(dirpath, filename)
# print(f" - {full_path}")