标准化数据

一、 离差标准化

import pandas as pd
filepath = 'D:/Desktop/data/user_all_info.csv'
#index_col=0 是 read_csv 函数的一个参数,它指定将 csv 文件中的第一列(索引从 0 开始)
pay = pd.read_csv(filepath, index_col=0)
# 自定义离差标准化函数
def min_max_scale(data):
    data = (data - data.min()) / (data.max() - data.min())
    return data
# 对用户每月支出信息表的每月支出数据做离差标准化
pay_min_max = min_max_scale(pay['每月支出'])
print('离差标准化之前每月支出数据为:\n', pay['每月支出'].head())
print('离差标准化之后每月支出数据为\n', pay_min_max.head())

二、标准差标准化数据

# 自定义标准差标准化函数
def standard_scaler(data):
    data = (data - data.mean()) / data.std()
    return data
# 对用户每月支出信息表的每月支出数据做标准差标准化
pay_standard = standard_scaler(pay['每月支出'])
print('标准差标准化之前每月支出数据为: \n', pay['每月支出'].head())
print('标准差标准化之后每月支出数据为: \n', pay_standard.head())

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值