一、 离差标准化

import pandas as pd
filepath = 'D:/Desktop/data/user_all_info.csv'
#index_col=0 是 read_csv 函数的一个参数,它指定将 csv 文件中的第一列(索引从 0 开始)
pay = pd.read_csv(filepath, index_col=0)
# 自定义离差标准化函数
def min_max_scale(data):
data = (data - data.min()) / (data.max() - data.min())
return data
# 对用户每月支出信息表的每月支出数据做离差标准化
pay_min_max = min_max_scale(pay['每月支出'])
print('离差标准化之前每月支出数据为:\n', pay['每月支出'].head())
print('离差标准化之后每月支出数据为\n', pay_min_max.head())

二、标准差标准化数据

# 自定义标准差标准化函数
def standard_scaler(data):
data = (data - data.mean()) / data.std()
return data
# 对用户每月支出信息表的每月支出数据做标准差标准化
pay_standard = standard_scaler(pay['每月支出'])
print('标准差标准化之前每月支出数据为: \n', pay['每月支出'].head())
print('标准差标准化之后每月支出数据为: \n', pay_standard.head())
