RDD案例-数据清洗

思路
1.读取数据,读入文本文件 sc.textFile()
2.对于文件中的每一行
  (1)拆分出年龄 split(",")(1)
  (2)判断年龄是否为数字,是,保留
3.将过滤后的数据保存到文件中 saveAsTextFile()
package org.example
 
import org.apache.spark.{SparkConf, SparkContext}
 
object DataFilter {
  //思路
  //1.读取数据,读入文本文件 sc.textFile()
  //2.对于文件中的每一行
  //  拆分出年龄 split(",")(1)
  //  判断年龄是否为数字,是,保留
  //3.将过滤后的数据保存到文件中 saveAsTextFile()
  def main(args: Array[String]): Unit = {
    //创建spark
    val conf = new SparkConf().setMaster("local[*]").setAppName("DataFilter")
    val sc = new SparkContext(conf)
 
    val rdd = sc.textFile("data/file.txt")
 
    var rdd1 = rdd.filter(line => {
      //拆分年龄
      val age = line.split(",")(1)
      //判断年龄是否为数字
      println(age)
      age.matches("\\d+") //返回值是一个boolean
    })
    //将所有的分区的数据合并成一个分区
    rdd1 = rdd1.coalesce(1)
    rdd1.saveAsTextFile("output")
  }
}
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值