混合业务场景多用户并发负载测试在于模拟真实软件生产环境中,多种用户角色、多种业务操作同时发生时,系统的综合性能表现。是业务价值链的整体吞吐能力和稳定性,验证系统在模拟的真实、复杂、并发用户访问压力下,能否持续稳定地提供服务,并精准定位整体性能瓶颈以便客户对软件代码进行有效的修改和软件运行环境和数据库环境进行升级。
设计测试场景:
定义3-5个最具代表性的用户档案(User Profile),并为每个档案分配一个虚拟用户比例和操作脚本(如:购物用户:60% = 登录→浏览商品→添加购物车→下单→支付)。
测试环境准备:
环境隔离与一致: 测试环境必须在硬件、软件、网络、数据配置上尽可能与生产环境一致,且独立运行,避免干扰。
数据准备: 准备海量、分布良好、符合业务规则的参数化测试数据(如用户账号、商品ID),避免因数据重复导致缓存命中率失真的情况发生。
测试工具选型:
专业性能测试工具: Apache JMeter (开源)、Gatling (开源,高性能)、k6 (开源,适合CI/CD) 或 LoadRunner (商业,功能强大)。
监控工具:
系统监控: Prometheus + Grafana(监控服务器CPU、内存、磁盘I/O、网络流量)。
应用监控: APM工具(如Azure App Insights, 听云, Pinpoint)监控代码级性能、慢SQL、函数调用链。
中间件/数据库监控: 监控数据库连接数、慢查询、缓存命中率(如Redis)、消息队列堆积情况。
测试执行:
测试执行是一个循序渐进的过程,通常采用阶梯增压:
基准测试: 以较低并发用户数运行,验证脚本正确性并获取性能基线。
负载测试: 逐步增加并发用户数,直至达到预期日常高峰负载。在此阶段,系统各项指标(TPS、响应时间、错误率、资源利用率)应保持稳定。此阶段目的是验证系统能否满足既定性能目标。
压力测试: 继续增加负载,直至系统吞吐量达到峰值并开始下降,同时响应时间急剧增长或错误率开始飙升。此阶段的目的是找到系统的性能极限和瓶颈点。
稳定性测试(耐力测试): 在预期高峰负载水平下,持续运行数小时(通常为4-8小时以上)。目的是检测系统在长期压力下是否存在内存泄漏、资源回收失败等问题。
在整个执行过程中,需持续采集并关联分析以下数据:
性能指标曲线: TPS、响应时间、错误率随时间/并发用户数变化的曲线。
资源利用率曲线: 应用/数据库服务器的CPU、内存、磁盘I/O、网络I/O使用率曲线。
关键资源计数: 数据库连接池使用情况、线程池状态、JVM GC频率与耗时(对于Java应用)。
定位测试瓶颈所在:
若TPS上不去,且应用服务器CPU使用率 >90%: 应用代码或算法存在计算瓶颈。
若TPS上不去,且数据库服务器CPU使用率 >90% 或发现大量慢查询: 数据库是瓶颈,需优化SQL或索引。
若响应时间随并发线性增长,但资源使用率很低: 可能存在外部依赖等待、线程阻塞或锁竞争。
若测试中后期内存使用率持续攀升不释放: 可能存在内存泄漏。