LeRobot 入门教程(一)软件环境、部署流程及摄像头配置

系列文章目录

目录

系列文章目录

前言

一、安装

1.1 安装 LeRobot

1.1.1 故障排除

1.2 可选依赖项

1.2.1 仿真

1.2.2 电机控制

1.2.3 实验跟踪

 二、开始使用真实机器人

2.1 设置与校准

2.2 远程操作

2.3 摄像头

2.4 使用摄像头进行远程操作

2.5 记录数据集

2.6 数据集上传

2.7 记录功能

2.7.1 数据存储

2.7.2 检查点与恢复

2.7.3 录制参数

2.7.4 录制过程中的键盘控制:

2.8 数据采集技巧

2.9 故障排除:

2.10 可视化数据集

2.11 回放一个剧集

2.12 训练策略

2.13 上传策略检查点

2.14 评估您的策略

三、摄像头

3.1 查找您的摄像头

3.2 使用摄像头

3.3 使用您的手机


前言

         最先进的机器学习技术应用于实际机器人领域

  • 🤗 LeRobot 致力于为实际机器人领域提供基于 PyTorch 的模型、数据集和工具。其目标是降低机器人技术的入门门槛,使每个人都能通过共享数据集和预训练模型来贡献力量并从中受益。
  • 🤗 LeRobot 包含经过验证可迁移到现实世界的最先进方法,重点在于模仿学习和强化学习。
  • 🤗 LeRobot 已经提供了一系列预训练模型、包含人类收集的演示数据集以及模拟环境,以便每个人都能快速入门。
  • 🤗 LeRobot 在 LeRobot HuggingFac
### 关于 Lerobot 的多摄像头配置 Lerobot种基于开源硬件和软件机器人平台,通常被设计为具备多种传感器输入能力,包括多个摄像头的支持。以下是关于 Lerobot 在多摄像头方面可能的应用或配置方法: #### 1. **多摄像头硬件连接** Lerobot 平台可以通过 USB 接口或其他扩展接口(如 CSI 或 MIPI)来接入多个摄像头设备。对于常见的嵌入式开发板(如 Jetson Nano、Raspberry Pi),可以利用其 GPIO 和外设接口实现多路视频流采集[^1]。 如果使用的是树莓派作为核心处理器,则推荐采用官方的 Raspberry Pi Camera Module,并通过额外的 USB 摄像头补充视角需求。为了减少带宽占用,可以选择支持 MJPEG 流传输协议的 IP 摄像头[^2]。 ```bash # 安装必要的库以支持多摄像头操作 sudo apt-get update && sudo apt-get install v4l-utils uvccapture fswebcam ``` --- #### 2. **同步与校准** 当部署两个及以上摄像头时,图像之间的同步至关重要。这涉及到时间戳匹配以及几何校正过程。OpenCV 提供了些工具可以帮助完成这些任务[^3]: ```python import cv2 def calibrate_cameras(cam_matrix_1, dist_coeffs_1, cam_matrix_2, dist_coeffs_2): """执行双目相机标定""" R, T, E, F = cv2.stereoCalibrate( objectPoints=..., imagePoints1=..., imagePoints2=..., imageSize=(width, height), cameraMatrix1=cam_matrix_1, distCoeffs1=dist_coeffs_1, cameraMatrix2=cam_matrix_2, distCoeffs2=dist_coeffs_2)[0:4] return R, T, E, F ``` 上述代码片段展示了如何利用 OpenCV 对两组摄像机进行立体标定,从而获得旋转矩阵 `R` 和平移向量 `T` 等参数。 --- #### 3. **视觉处理框架集成** 借助深度学习模型或者传统计算机视觉算法,可以从不同角度捕获的数据中提取有用特征。例如,在物体检测场景下,可将来自各个方向的画面拼接成全景视图后再送入 YOLOv8 进行推理。 ```yaml # 配置文件示例 (for multi-camera setup) model: yolov8n.pt imgsz: [640, 640] conf_thres: 0.25 iou_thres: 0.45 device: cuda:0 agnostic_nms: False augment: True ``` 注意调整输入分辨率 (`imgsz`) 来适应实际拍摄范围的变化情况;同时考虑到计算资源有限的情况下适当降低精度阈值(`conf_thres`)有助于提升实时性能表现。 --- #### 4. **具体应用场景举例** - **环境监控**: 利用安装在 lerobot 上的不同位置的广角镜头持续观察周围动态; - **导航避障**: 结合 SLAM 技术形成三维地图的同时识别潜在障碍物; - **交互体验增强**: 添加人脸识别功能使得机器人能够主动接近特定目标人物并与之互动。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值