大多数工作流工具,实际上是在创造更多的工作。我们回归第一性原理,去打造一个能真正理解你的意图、并直接交付成果的 AI,而不是给你又一个新工具。
在我们上一篇文章中,我们提到,那个属于复杂、可配置化 AI 平台的时代正在结束。
原因很简单:用户想要的是结果,而不是工具。他们想要的是把钉子钉进墙里,而不是一把更亮、更复杂的锤子。
这个观察引导我们提出了一个更根本性的问题,一个从第一性原理出发的问题:到底什么是“工作流”?
通常的答案是,工作流就是一系列任务,一个你亲手搭建的步骤序列。我们认为,这个看法从根本上就错了。
所谓“工作流”,并不是你搭建的一套流程,而是你解决的一个问题。
而一个问题一旦被解决,它就应该永远保持在被解决的状态。
工具的“本职工作”
如果说工作流是一个“已被解决的问题”,那么工作流工具的本职工作,就应该是帮助你解决它,并记住解决方案。
然而,现实并非如此。如今的工具常常成为用户的障碍,迫使用户扮演系统架构师的角色,而他们想要的仅仅是一个答案。
当我们研究人们如何使用现有工作流产品时,我们清晰地看到了两种截然不同的挫败感。
对于非技术用户来说,入门门槛高得惊人。他们带着一个简单的业务需求,比如“我想追踪竞争对手的价格” ,却立刻撞上了一堵由抽象概念组成的墙。他们被迫去学习一套关于“节点”、“触发器”和“工作流”的专门词汇,才能刚刚开始。那个通常由拖拽选项构成的复杂画布界面,感觉上更像是一场对用户的考验,而非一个解决方案。当错误发生时,技术性的报错信息如同天书,让他们完全不知道如何修复。所谓的“低代码”承诺,感觉更像是一种诱导欺骗;它依旧过于复杂。
对于技术用户来说,最初的障碍虽然较低,但他们很快会撞上另一种墙:性能天花板。他们发现,运行复杂的任务或处理大量数据时,系统会变得极其缓慢。那些预置的节点和连接器,虽然方便,但往往非常僵化。如果他们需要一个特定的功能,或者想连接到一个没有现成插件的服务,他们就束手无策了。调试更是一场噩梦;当工作流失败时,精确定位问题的根源变成了一场令人沮丧的反复试错。
这两种用户,尽管技能水平不同,却都在把时间浪费在与工具的对抗上,而不是解决他们真正的问题。
这个工具,辜负了它的本职工作。
为什么不能直接告诉工具我们想要什么?
这个问题切中了所有复杂性的要害。如果最终目标是从一个业务需求,抵达一个业务成果,我们为什么要容忍中间如此多的步骤?
为什么我们不能仅仅陈述我们的意图,然后让工具自己去搞定一切?
这并非遥远的未来梦想,而是对现代人工智能合乎逻辑的期望。将人类意图翻译成机器指令的负担,应该落在工具身上,而不是人身上。
这个简单的想法,成为了我们设计 Maybe AI 的基石。
答案分为三部分:理解、行动、记住
我们决定基于这个原则构建一个平台。我们给你的不是一个工作台和一箱零件,而是一个能倾听你想法的专家。整个过程基于三个简单而强大的概念。
-
理解 (Understand):这一切始于从识别功能到理解业务的转变。用户不必知道自己“需要一个爬虫”。他们应该能用自然语言陈述他们的商业目标:“找到最近获得 A 轮融资的 AI 创业公司,并分析其投资价值”。我们的系统,就是为了理解这种意图及其背后的商业逻辑而设计的。
-
行动 (Act):一旦你的意图被理解,系统会自动处理整个“获取-分析-行动”的业务闭环。我们的智能规划引擎 (intelligent planning engine) 会确定最佳策略,选择正确的工具(如用于数据采集的 Maybe Crawler),并执行计划。它会独立工作,直至任务完成。
-
记住 (Remember):这是最重要的部分。当系统成功完成一个任务后,它不会只交付结果然后抛之脑后。我们的工作流固化机制 (Workflow Solidification Mechanism) 会自动将那条成功的执行路径,保存为一个可复用的智能解决方案。当你要求监控竞品价格时,系统不仅会执行一次。它会提示你:“这次监控非常成功!您想将它保存为专属的‘竞品价格监控解决方案’吗?”。
这才是关键。你不再只是使用一个工具,你正在拥有一个解决方案。
让解决方案,像滚雪球一样越用越强
当一个成功的工作流被固化成一个个人专属的“解决方案”时,奇妙的事情发生了。
下一次你需要它时,执行时间会大幅缩短。更重要的是,这个解决方案是能够进化的。每一次使用,它都会学习你的偏好,变得更聪明。
很快,你拥有的就不再只是一个被解决的问题,而是一个由它们组成的解决方案库。这些解决方案可以协同工作,处理更复杂的请求。你的“市场趋势解决方案”可以为你的“营销内容解决方案”提供数据,从而创造出一个能理解你和你业务的智能助理网络。
这就是被解决问题的“复利效应”。系统的价值随着每一次互动而增长。
成功的衡量标准不再是“我学会了使用一个复杂的工具” ,而是,“我拥有了一套能理解我业务的智能解决方案”。这,就是我们正在构建的未来。