2、图像分类实战指南

图像分类实战指南

1. 引言

图像分类是计算机视觉领域中的一个核心问题,旨在将整张图像标记为一个标签。这项任务看似简单,但在实际应用中却面临诸多挑战。为了帮助大家更好地理解和掌握图像分类技术,本文将详细讲解如何使用Keras和TensorFlow训练一个深度学习模型来进行宠物分类。通过具体的案例和代码示例,我们将一步步引导你完成从数据准备到模型训练的全过程。

2. MNIST 数据集入门

MNIST数据集是一个手写数字识别的经典数据集,包含60,000张训练图像和10,000张测试图像。每张图像的尺寸为28x28像素,灰度图像。MNIST数据集因其简单性和广泛应用而成为初学者的理想选择。

2.1 加载MNIST数据集

首先,我们需要加载MNIST数据集。以下代码展示了如何使用TensorFlow加载MNIST数据集:

from tensorflow.keras.datasets import mnist

# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# 查看数据形状
print(f"Training data shape: {x_train.shape}")
print(f"Test data shape: {x_test.shape}")

2.2 数据预处理

在训练模型之前,我们需要对数据进行预处理。主要包括归一化和重塑数据形状,使其适应模型输入的要求。


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值