图像分类实战指南
1. 引言
图像分类是计算机视觉领域中的一个核心问题,旨在将整张图像标记为一个标签。这项任务看似简单,但在实际应用中却面临诸多挑战。为了帮助大家更好地理解和掌握图像分类技术,本文将详细讲解如何使用Keras和TensorFlow训练一个深度学习模型来进行宠物分类。通过具体的案例和代码示例,我们将一步步引导你完成从数据准备到模型训练的全过程。
2. MNIST 数据集入门
MNIST数据集是一个手写数字识别的经典数据集,包含60,000张训练图像和10,000张测试图像。每张图像的尺寸为28x28像素,灰度图像。MNIST数据集因其简单性和广泛应用而成为初学者的理想选择。
2.1 加载MNIST数据集
首先,我们需要加载MNIST数据集。以下代码展示了如何使用TensorFlow加载MNIST数据集:
from tensorflow.keras.datasets import mnist
# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 查看数据形状
print(f"Training data shape: {x_train.shape}")
print(f"Test data shape: {x_test.shape}")
2.2 数据预处理
在训练模型之前,我们需要对数据进行预处理。主要包括归一化和重塑数据形状,使其适应模型输入的要求。