Python画ROC图与AUC值

本文介绍了ROC曲线及其对应的AUC值在二分类问题中的重要性。ROC全称为受试者工作特征,AUC是ROC曲线下的面积,用于评估深度学习模型如PyTorch神经网络的性能。关键概念包括真阳性(TP)、真阴性(TN)、假阳性(FP)和假阴性(FN),这些是计算ROC的基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ROC和AUC定义

ROC全称是“受试者工作特征”(Receiver Operating Characteristic)。ROC曲线的面积就是AUC(Area Under the Curve)。AUC用于衡量“二分类问题”机器学习算法性能(泛化能力)

计算ROC的关键概念

  • P(Positive):预测值为正例
  • N(Negative):预测值为反例
  • T(True):预测值与真实值相同
  • F(False):预测值与真实值相反
  • TP:被模型预测为正类的正样本
  • TN:被模型预测为负类的负样本
  • FP:被模型预测为正类的负样本
  • FN:被模型预测为负类的正样本
    在这里插入图片描述
    在这里插入图片描述
from sklearn.metrics import roc_curve
from sklearn.metrics import auc
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值