ROC和AUC定义
ROC全称是“受试者工作特征”(Receiver Operating Characteristic)。ROC曲线的面积就是AUC(Area Under the Curve)。AUC用于衡量“二分类问题”机器学习算法性能(泛化能力)
计算ROC的关键概念
- P(Positive):预测值为正例
- N(Negative):预测值为反例
- T(True):预测值与真实值相同
- F(False):预测值与真实值相反
- TP:被模型预测为正类的正样本
- TN:被模型预测为负类的负样本
- FP:被模型预测为正类的负样本
- FN:被模型预测为负类的正样本
from sklearn.metrics import roc_curve
from sklearn.metrics import auc