2.1,DML添加数据:
DML
英文全称是
Data Manipulation Language(
数据操作语言
)
,用来对数据库中表的数据记录进
行增、删、改操作。
添加数据(
INSERT
)
修改数据(
UPDATE
)
删除数据(
DELETE
)
(1)添加数据:给指定字段添加数据
INSERT INTO 表名 (字段名1, 字段名2, ...) VALUES (值1, 值2, ...);
案例
:
给
employee
表所有的字段添加数据 ;
insert into employee(id,workno,name,gender,age,idcard,entrydate)
values(1,'1','Itcast','男',10,'123456789012345678','2000-01-01');
插入数据完成之后,查询数据库的数据:
select * from employee;
(2)给全部字段添加数据
INSERT INTO 表名 VALUES (值1, 值2, ...);
案例:插入数据到
employee
表,具体的
SQL
如下:
insert into employee values(2,'2','张无忌','男',18,'123456789012345670','2005-01-
01');
(3)批量添加数据:
INSERT INTO 表名 (字段名1, 字段名2, ...) VALUES (值1, 值2, ...), (值1, 值2, ...), (值
1, 值2, ...) ;
INSERT INTO 表名 VALUES (值1, 值2, ...), (值1, 值2, ...), (值1, 值2, ...) ;
案例:批量插入数据到
employee
表,具体的
SQL
如下:
insert into employee values(3,'3','韦一笑','男',38,'123456789012345670','2005-01-
01'),(4,'4','赵敏','女',18,'123456789012345670','2005-01-01');
注意事项:
插入数据时,指定的字段顺序需要与值的顺序是一一对应的。
字符串和日期型数据应该包含在引号中。
插入的数据大小,应该在字段的规定范围内。
2.2,DML修改数据:
修改数据的具体语法为:
UPDATE 表名 SET 字段名1 = 值1 , 字段名2 = 值2 , .... [ WHERE 条件 ] ;
案例
:
A.
修改
id
为
1
的数据,将
name
修改为
itcast
update employee set name = 'itcast' where id =1 ;
B.
修改
id
为
1
的数据
,
将
name
修改为小昭
, gender
修改为 女
update employee set name ='小昭',gender = '女' where id = 1 ;
C.
将所有的员工入职日期修改为
2008-01-01
update employee set entrydate = '2008-01-01';
注意事项: 修改语句的条件可以有,也可以没有,如果没有条件,则会修改整张表的所有数据。
2.3,DML删除数据:
删除数据的具体语法为:
DELETE FROM 表名 [ WHERE 条件 ] ;
案例
:
A.
删除
gender
为女的员工
delete from employee where gender = '女';
B.
删除所有员工
delete from employee ;
注意事项
:
• DELETE
语句的条件可以有,也可以没有,如果没有条件,则会删除整张表的所有数
据。
• DELETE
语句不能删除某一个字段的值
(
可以使用
UPDATE
,将该字段值置为
NULL
即
可
)
。
•
当进行删除全部数据操作时,
会提示我们,询问是否确认删除,我们直接点击 Execute即可。
2.4,DQL查询数据:
DQL
英文全称是
Data Query Language(
数据查询语言
)
,数据查询语言,用来查询数据库中表的记
录。
查询关键字
: SELECT
在一个正常的业务系统中,查询操作的频次是要远高于增删改的,当我们去访问企业官网、电商网站, 在这些网站中我们所看到的数据,实际都是需要从数据库中查询并展示的。而且在查询的过程中,可能 还会涉及到条件、排序、分页等操作。
那么,本小节我们主要学习的就是如何进行数据的查询操作。 我们先来完成如下数据准备工作
:
drop table if exists employee;
create table emp(
id int comment '编号',
workno varchar(10) comment '工号',
name varchar(10) comment '姓名',
gender char(1) comment '性别',
age tinyint unsigned comment '年龄',
idcard char(18) comment '身份证号',
workaddress varchar(50) comment '工作地址',
entrydate date comment '入职时间'
)comment '员工表';
INSERT INTO emp (id, workno, name, gender, age, idcard, workaddress, entrydate)
VALUES (1, '00001', '柳岩666', '女', 20, '123456789012345678', '北京', '2000-01-
01');
INSERT INTO emp (id, workno, name, gender, age, idcard, workaddress, entrydate)
VALUES (4, '00004', '赵敏', '女', 18, '123456757123845670', '北京', '2009-12-01');
INSERT INTO emp (id, workno, name, gender, age, idcard, workaddress, entrydate)
VALUES (5, '00005', '小昭', '女', 16, '123456769012345678', '上海', '2007-07-01');
INSERT INTO emp (id, workno, name, gender, age, idcard, workaddress, entrydate)
VALUES (6, '00006', '杨逍', '男', 28, '12345678931234567X', '北京', '2006-01-01');
INSERT INTO emp (id, workno, name, gender, age, idcard, workaddress, entrydate)
VALUES (7, '00007', '范瑶', '男', 40, '123456789212345670', '北京', '2005-05-01');
INSERT INTO emp (id, workno, name, gender, age, idcard, workaddress, entrydate)
VALUES (16, '00016', '周芷若', '女', 18, null, '北京', '2012-06-01');
基本语法:DQL
查询语句,语法结构如下:
SELECT
字段列表
FROM
表名列表
WHERE
条件列表
GROUP BY
分组字段列表
HAVING
分组后条件列表
ORDER BY
排序字段列表
LIMIT
分页参数
我们在讲解这部分内容的时候,会将上面的完整语法进行拆分,分为以下几个部分:
基本查询(不带任何条件)
条件查询(
WHERE
)
聚合函数(
count
、
max
、
min
、
avg
、
sum
)
分组查询(
group by
)
排序查询(
order by
)
分页查询(
limit
)
2.5,DQL基础查询:
在基本查询的
DQL
语句中,不带任何的查询条件,查询的语法如下
查询多个字段
SELECT 字段1, 字段2, 字段3 ... FROM 表名 ;
SELECT * FROM 表名;
注意
: *
号代表查询所有字段,在实际开发中尽量少用(不直观、影响效率)。
字段设置别名
SELECT 字段1 [ AS 别名1 ] , 字段2 [ AS 别名2 ] ... FROM 表名;
SELECT 字段1 [ 别名1 ] , 字段2 [ 别名2 ] ... FROM 表名;
去除重复记录
SELECT DISTINCT 字段列表 FROM 表名;
案例:
A.
查询指定字段
name, workno, age
并返回
select name workno, age from emp;
B.
查询返回所有字段
select * from emp ;
select id ,workno, name ,gender , age , idcard , workaddress ,entrydate from emp;
C.
查询所有员工的工作地址
,
起别名
select workaddress as '工作地址' from emp;
D.
查询公司员工的上班地址有哪些
(
不要重复)
select distinct workaddress '工作地址' from emp;
2.6,DQL条件查询:
语法:
SELECT 字段列表 FROM 表名 WHERE 条件列表 ;
条件:
常用的比较运算符如下
:
常见的逻辑运算符如下:
案例:
A.
查询年龄等于
88
的员工
select * from emp where age = 88 ;
B.
查询年龄小于
20
的员工信息
select * from emp where age <20;
C.
查询年龄小于等于
20
的员工信息
select * from emp where age <=20 ;
D.
查询没有身份证号的员工信息
select * from emp where idcard is NULL ;
E.
查询有身份证号的员工信息
select * from emp where idcard is not NULL;
F.
查询年龄不等于
88
的员工信息
select * from emp where age != 88;
G.
查询年龄在
15
岁
(
包含
)
到
20
岁
(
包含
)
之间的员工信息
select * from emp where age between 15 and 20 ;
select * from emp where age >= 15 and age <=20;
H.
查询性别为 女 且年龄小于
25
岁的员工信息
select * from emp where gender ='女' and age <25;
I.
查询年龄等于
18
或
20
或
40
的员工信息
select * from emp where age in ( 18 ,20 ,40);
J.
查询姓名为两个字的员工信息
_ %
select * from emp where name like '__';
K.
查询身份证号最后一位是
X
的员工信息
select * from emp where idcard like '%X';
2.7,DQL聚合函数:
介绍 :将一列数据作为一个整体,进行纵向计算 。
常见的聚合函数:
语法:
SELECT 聚合函数(字段列表) FROM 表名 ;
案例:
A.
统计该企业员工数量
select count(idcard) from emp; --统计的是idcard字段不为null的记录数
对于
count
聚合函数,统计符合条件的总记录数,还可以通过
count(
数字
/
字符串
)
的形式进行统计
查询,比如:
select count(*) from emp;
select count(1) from emp;
B. 统计该企业员工的平均年龄
select avg(age) from emp;
C.
统计该企业员工的最大年龄
select max(age) from emp;
D.
统计该企业员工的最小年龄
select min(age) from emp;
E. 统计西安地区员工的年龄之和
select sum(age) from emp where workaddress = '西安';
2.8,DQL分组查询:
语法
SELECT 字段列表 FROM 表名 [ WHERE 条件 ] GROUP BY 分组字段名 [ HAVING 分组
后过滤条件 ];
where与having区别:
(1)执行时机不同:where是分组之前进行过滤,不满足where条件,不参与分组;而having是分组
之后对结果进行过滤。
(2)判断条件不同:where不能对聚合函数进行判断,而having可以。
注意事项
:
•
分组之后,查询的字段一般为聚合函数和分组字段,查询其他字段无任何意义。
•
执行顺序
: where >
聚合函数
> having
。
•
支持多字段分组
,
具体语法为
: group by columnA,columnB。
案例
:
A.
根据性别分组
,
统计男性员工 和 女性员工的数量
select gender ,count(*) from emp group by gender;
B.
根据性别分组
,
统计男性员工 和 女性员工的平均年龄
select gender,avg(age) from emp group by gender;
C.
查询年龄小于
45
的员工
,
并根据工作地址分组
,
获取员工数量大于等于
3
的工作地址
select workaddress,count(*) as address_count from emp
where age <45 group by workaddress having address_count >=3;
D.
统计各个工作地址上班的男性及女性员工的数量
select workaddress ,gender, count(*) as '数量' from emp group by
gender,workaddress;