【相似度问题】KL散度 +轨迹相似度

https://www.jianshu.com/p/43318a3dc715

KL散度

表示分布之间的”差异“,不是”距离“。

不满足距离定义的对称性,不满足三角不等式。
K L ( A , B ) ! = K L ( B , A ) KL(A, B) != KL(B, A) KL(A,B)!=KL(B,A)

相对熵公式: D K L ( P ( x ) ∣ ∣ Q ( x ) ) = ∑ P ( x ) l o g P ( x ) Q ( x ) D_{KL}(P(x)||Q(x)) = \sum P(x) log \frac{P(x)}{Q(x)} DKL(P(x)Q(x))=P(x)logQ(x)P(x)
典型情况下, P P P表示数据的真实分布, Q Q Q表示数据的理论分布,模型分布,或 P P P的近似分布。

JS 散度

JS 散度度量了两个概率分布的相似度,基于KL散度的变体,解决了KL散度非对称的问题。一般地,JS散度是对称的,其取值是0到1之间。定义如下:
D J S ( P 1 ∣ ∣ P 2 ) = 1 2 ( D K L ( P 1 ∣ ∣ P 1 + P 2 2 ) + D K L ( P 2 ∣ ∣ P 1 + P 2 2 ) ) D_{JS}(P_1||P_2) = \frac{1}{2}(D_{KL}(P_1||\frac{P_1 + P_2}{2}) + D_{KL}(P_2||\frac{P_1 + P_2}{2})) DJS(P1P2)=21(DKL(P12P1+P2)+DKL(P22P1+P2))

EMD 距离

产销平衡问题

轨迹相似性度量

LCSS:最长递增子序列
如果是错位的相似,有一定的时间滞后,也可进行相似度的计算。
这是一个新的算法,动态时间规整。

DTW

采用动态规划的思想,计算两个序列的最短距离,并可记录路径。

shapelet

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值