https://www.jianshu.com/p/43318a3dc715
KL散度
表示分布之间的”差异“,不是”距离“。
不满足距离定义的对称性,不满足三角不等式。
K L ( A , B ) ! = K L ( B , A ) KL(A, B) != KL(B, A) KL(A,B)!=KL(B,A)
相对熵公式:
D
K
L
(
P
(
x
)
∣
∣
Q
(
x
)
)
=
∑
P
(
x
)
l
o
g
P
(
x
)
Q
(
x
)
D_{KL}(P(x)||Q(x)) = \sum P(x) log \frac{P(x)}{Q(x)}
DKL(P(x)∣∣Q(x))=∑P(x)logQ(x)P(x)
典型情况下,
P
P
P表示数据的真实分布,
Q
Q
Q表示数据的理论分布,模型分布,或
P
P
P的近似分布。
JS 散度
JS 散度度量了两个概率分布的相似度,基于KL散度的变体,解决了KL散度非对称的问题。一般地,JS散度是对称的,其取值是0到1之间。定义如下:
D
J
S
(
P
1
∣
∣
P
2
)
=
1
2
(
D
K
L
(
P
1
∣
∣
P
1
+
P
2
2
)
+
D
K
L
(
P
2
∣
∣
P
1
+
P
2
2
)
)
D_{JS}(P_1||P_2) = \frac{1}{2}(D_{KL}(P_1||\frac{P_1 + P_2}{2}) + D_{KL}(P_2||\frac{P_1 + P_2}{2}))
DJS(P1∣∣P2)=21(DKL(P1∣∣2P1+P2)+DKL(P2∣∣2P1+P2))
EMD 距离
产销平衡问题
轨迹相似性度量
LCSS:最长递增子序列
如果是错位的相似,有一定的时间滞后,也可进行相似度的计算。
这是一个新的算法,动态时间规整。
DTW
采用动态规划的思想,计算两个序列的最短距离,并可记录路径。