1. 论文基本信息
-
论文标题:Generative Adversarial Nets
-
作者:Ian J. Goodfellow,∗ Jean Pouget-Abadie,† Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,‡ Aaron Courville, Yoshua Bengio§
-
发表时间和期刊:2014.06;NeurIPS
2. 研究背景和动机
到目前为止,深度学习中最引人注目的成功来自于判别模型,通常是那些将高维度、丰富的输入映射到类别标签的模型。相比之下,生成模型的影响力较小,原因在于近似许多难以处理的概率计算(这些计算在最大似然估计和相关策略中出现)非常困难,此外在生成背景中难以利用分段线性单元的优势。
3. 主要贡献
(1) 我们通过“对抗”的方式提出了一种新的framework用于估算生成模型,绕过了这些难题。在所提出的对抗网络框架中,生成模型与一个对手判别模型进行对抗:一个判别模型学习如何判断样本是来自伪造的分布还是数据分布。生成模型可以类比为一组伪造者,试图制造假币并使用而不被发现,而判别模型则类似于警察,试图识别假币。这场竞争驱使双方不断改进方法