Yalmip + Gurobi检查不可性约束(Model is infeasible)

1.求解报错

在这里插入图片描述

2.加入以下程序

	%检查不可行约束
    [model,recoverymodel] = export(Con_MP,F_MP,ops);
    iis = gurobi_iis(model);
    gurobi_write(model, 'TestModel.lp');

3.找到iis.Arows,为1表示该行对应的是冲突约束

在这里插入图片描述

4.打开TestModel.lp文件,找到3中对应编号的冲突约束,注意.lp文件中的约束行是从R0开始算的,即上图中16为1对应的冲突约束在下图中为R15

在这里插入图片描述

### 解决 MATLAB 中的 Infeasible Problem 在处理MATLAB中的不可行问题(infeasible problem),通常意味着所设定的约束条件之间存在矛盾,使得没有任何解能够满足所有的约束。针对这种情况,有几种策略可以帮助识别并解决问题。 #### 1. 检查输入数据的一致和合理 确保所有输入参数都是合理的,并且相互间不存在逻辑上的冲突。例如,在设置边界条件时要特别注意上下限之间的关系,避免出现上限低于下限的情况[^1]。 #### 2. 使用 linprog 的诊断功能 `linprog` 函数提供了 `ExitFlag` 和 `Output` 结构体来帮助分析求解过程中的状态。如果返回的结果表明问题是不可行的,则可以通过检查这些输出了解更多信息。特别是 `Output.message` 字段可能包含了有关为何无法找到解决方案的具体提示。 ```matlab [x,fval,exitflag,output] = linprog(f,A,b,Aeq,beq,lb,ub); disp(output.message); % 显示详细的错误信息 ``` #### 3. 放松某些约束或引入松弛变量 当发现确实存在难以调和的约束组合时,考虑适当放宽部分限制或是通过增加额外的决策变量(即所谓的“松弛变量”),允许一定程度上的违反原有约束,从而转换成一个新的可行域更大的优化模型[^3]。 #### 4. 利用对偶理论辅助调试 对于线规划而言,利用其特有的质——原问题与对偶问题的关系也十分有用。通过对偶形式重新审视原始问题,有时能更容易地定位到造成不可的根源所在;另外,还可以尝试先解决较为简单的对偶版本,再反向推导回原问题寻找潜在改进方向。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值