机器人的「物理图灵测试」,英伟达Jim Fan 17分钟演讲揭秘具身Scaling Law

来源 | 机器之心

Jim Fan,英伟达机器人部门主管和杰出科学家、GEAR 实验室联合领导人、OpenAI 的首位实习生,最近在红杉资本主办的 AI Ascent 上做了一场 17 分钟的演讲,介绍了「解决通用机器人问题的第一性原理」,包括训练机器人 AI 的数据策略、Scaling Law 以及基于物理 API 的美好未来。

其中尤其提到了「物理图灵测试」,大意是说对于一个真实的物理场景和一个指令,会有人类或机器人根据该指令对这个场景进行相应的处理,然后看其他人能否分辨这个场景是人类处理的还是机器人处理的。

很显然,Jim Fan 以及英伟达正在朝着让机器人和 AI 通过这个物理图灵测试而努力。在文本中,我们梳理了 Jim Fan 的主要演讲内容,另外还在文末发起了一个投票,看你觉得物理图灵测试会在什么时候被攻克?



,时长17:33

 

以下为经过梳理的演讲内容。

几天前,一篇博客文章引起了我的注意。它说:「我们通过了图灵测试,却没人注意到。」图灵测试曾经是神圣的,堪称计算机科学的圣杯,结果我们就这么通过了。

Jim Fan 提到的博客:https://signull.substack.com/p/we-passed-the-turing-test-and-nobody

当 o3 mini 多花几秒钟思考,或者 Claude 无法调试你那些讨厌的代码时,你会感到不满,对吧?然后我们把每一个大语言模型的突破都当作只是又一个普通的星期二。在座的各位是最难打动的人。

所以我想提出一个非常简单的东西,叫做「物理图灵测试(Physical Turing Test)」。

物理图灵测试

想象一下,你在周日晚上举办了一个黑客马拉松派对,最后你的房子变成了这样:

你的伴侣对你大喊大叫,你想:「哎呀,周一早上,我想告诉某人清理这个烂摊子,然后为我准备一顿很好的烛光晚餐,这样我的伴侣就能开心了。」

然后你回到家,看到这一切(实现了),但你无法分辨是人还是机器帮你弄的。物理图灵测试就是这么简单。

那我们现在进展到什么程度了?接近了吗?看看这个准备开始工作的机器人:

动图封面

再看看机器狗遇到香蕉皮:

动图封面

机器人为你准备燕麦早餐:

动图封面

这就是我们的现状。

那么,为什么解决物理图灵测试如此困难呢?

你们知道大语言模型研究人员经常抱怨,对吧?最近有个叫 Ilya 的人抱怨说:大语言模型预训练的数据快用完了。他甚至称互联网为「AI 的化石燃料」。他说我们快没有数据来训练大语言模型了。但是,如果你了解机器人模型,你就会知道大语言模型研究人员被宠坏了。我们甚至连化石燃料都没有。

下图是英伟达总部的一个数据收集环节。英伟达有一个咖啡厅,我们设置了这些人形机器人,我们操作它们并收集数据。

动图封面

收集到的数据如下图所示。这是机器人关节控制信号,是随时间变化的连续值。你在维基百科、YouTube、Reddit 或任何地方都找不到这种数据,所以你必须自己收集。

那我们是怎么收集的呢?

我们有一种非常复杂但也非常昂贵的方法,叫做遥操作(teleoperation)。你可以让人佩戴某种 VR 头显,它能识别你的手势并将其传输给机器人。这样你就可以教机器人技能,比如从烤面包机中取出面包,然后倒上蜂蜜。但可以想象,这是一个非常缓慢且痛苦的过程。

如果你把这个方法放到 scaling 图上,你会发现它根本不能 scale。真实机器人数据的获取是在拿人力当燃料,这比用化石燃料更糟糕。而且,一个机器人每天只有 24 小时的时间可以用。实际可利用的时间更少,因为人会疲劳,机器人比人类更容易疲劳。

那我们该怎么办呢?机器人的核能在哪里?我们必须有清洁能源。不能永远依靠化石燃料。

模拟很重要

接下来进入「模拟」。我们必须离开物理世界,进入模拟的世界。

我们训练了一个机器手,能在模拟中完成超人般的灵巧任务,如转笔。对我来说这是超人的,因为我不能转笔,我很高兴我的机器人至少在模拟中能做得比我好。

动图封面

那么如何训练机器手来完成这样复杂的任务呢?我们有两个想法。一是你必须以比实时快 10000 倍的速度进行模拟。这意味着你应该在单个 GPU 上并行运行 10000 个环境进行物理模拟。

第二点,10000 个环境副本不能都相同。你必须改变一些参数,如重力、摩擦力和重量。我们称之为域随机化

这给了我们模拟原则。

为什么这种做法能 work?想象一下,如果一个神经网络能够控制机器人掌握一百万个不同的世界,那么它很可能也能掌握第一百万零一个世界 —— 即我们的物理现实。换句话说,我们的物理世界处于这种训练的分布之中。

接下来,我们如何应用这些模拟结果呢?你可以建立一个数字孪生(digital twin),即机器人和世界的一对一副本,然后你在模拟中训练,直接在真实世界中测试,零样本迁移。

机器手也是如此:

我们能做的最令人印象深刻的任务是让狗站在瑜伽球上走,我们把它从虚拟迁移到现实世界。

动图封面

我们的研究人员看起来超级奇怪,就像《黑镜》的一集。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值