CVPR`25 | SOTA!首揭PCA解决长视频低质问题!FreePCA让长视频丝滑如电影!(中科大)

文章链接:https://arxiv.org/pdf/2505.01172
Git链接:https://github.com/JosephTiTan/FreePCA

亮点直击

  • 首次揭示了PCA能够有效将视频特征解耦为一致的外观和运动强度特征,从而解决长视频生成中的不一致性和低质量问题。

  • 提出了一种技术,从整个视频序列的全局特征中提取主成分空间中的一致性特征,并逐步将其整合到通过滑动窗口获得的局部特征中,从而在保证视频质量的同时确保一致性。

  • 大量实验表明,本文的方法优于现有方法,达到了SOTA性能。此外,该方法无需额外训练即可应用于多种基础视频扩散模型。

总结速览

解决的问题

  • 长视频生成的分布偏移问题
    • 使用基于短视频训练的模型生成长视频时,由于帧数变化导致数据分布偏移,出现质量下降、物体缺失和运动缓慢等问题。

  • 全局与局部信息难以有效融合
    • 现有方法(如全局对齐或局部滑动窗口拼接)无法兼顾全局一致性和局部质量,导致视频出现运动不一致或视觉质量下降。

  • 外观与运动耦合的挑战
    • 视频中的外观和运动高度耦合,直接融合全局和局部特征会导致生成结果不协调。

提出的方案

  • FreePCA框架
    • 一种基于主成分分析(PCA)的无训练长视频生成范式,通过解耦外观一致性和运动强度特征,实现全局一致性与局部质量的互补融合。

  • 核心步骤
    • 一致性特征分解
      • 利用PCA将全局和局部特征投影到主成分空间,通过余弦相似度划分一致外观特征(高相似度)和运动强度特征(低相似度)。

      • 用全局特征的平滑外观补充局部特征,提升一致性。

    • 渐进式融合
      • 滑动窗口时逐步增加一致性特征的融合比例,平衡生成灵活性与过渡平滑性。

    • 噪声均值复用
      • 复用初始噪声的均值统计量,进一步增强视频一致性。

应用的技术

  • 主成分分析(PCA)
    • 在时序维度对视频特征进行解耦,分离外观一致性和运动强度。

  • 余弦相似度度量
    • 用于量化全局与局部特征的相似性,划分主成分空间中的一致性特征。

  • 渐进式特征融合
    • <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值