【AI实践】Dify调用本地和在线模型服务

背景

Ollama可以本地部署模型,如何集成私有数据、如何外部应用程序对接,因此需要有一个应用开发框架

Dify功能介绍

欢迎使用 Dify | 中文 | Dify

下文将把dify部署在PC上,windows环境;

安装部署

安装dify及docker

jacob@Jacobs-NUC:/mnt/d/wsl$ git clone https://github.com/langgenius/dify
Cloning into 'dify'...
remote: Enumerating objects: 59108, done.
remote: Counting objects: 100% (8801/8801), done.
remote: Compressing objects: 100% (1569/1569), done.

docker已经安装完成的情况下

PS C:\Users\iamlv> cd D:\wsl\dify
### Dify 调用外部知识库的方式 Dify 是一种用于构建 AI 应用程序的强大工具,支持多种集成方式来增强其功能。为了实现对外部知识库的调用,通常可以通过配置插件或自定义 API 来完成此操作。 #### 插件机制 Dify 提供了一种灵活的插件架构,允许开发者通过安装第三方插件或将现有服务作为数据源接入[^1]。例如,可以创建一个专门针对特定知识管理系统的插件(如 Notion、Confluence 或 SharePoint),并将其注册到应用程序中。这些插件能够自动同步远程存储中的文档内容至本地索引数据库以便快速检索。 #### 自定义API接口 如果目标平台未提供官方支持,则可通过开发自定义 RESTful Web Service 实现相同目的。该方法涉及编写一段中间层逻辑代码用来桥接两者之间的通信协议差异以及处理权限验证等问题。下面给出 Python Flask 微框架下的简单示例: ```python from flask import Flask, request, jsonify app = Flask(__name__) @app.route('/fetch_kb', methods=['POST']) def fetch_knowledge_base(): payload = request.json kb_id = payload.get('kbId') # 假设这里有一个函数可以从指定ID获取对应的知识条目列表 entries = get_entries_from_external(kb_id) return jsonify(entries), 200 if __name__ == '__main__': app.run(debug=True) ``` 上述脚本展示了如何设置 POST 请求处理器 `/fetch_kb` ,它接收 JSON 格式的输入参数 `kbId` 并返回关联的结果集给客户端应用进一步解析利用。 #### 数据预处理与向量化 无论采用何种途径引入外部资料,在实际运用前都需要经历必要的清洗转换过程以适配模型预期格式需求。这可能包括但不限于分词、去除停用词、生成嵌入表示等步骤。对于大规模语料而言,提前计算好对应的向量表达形式有助于提升查询效率服务稳定性。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值