【AI实践】阿里云方言文本转语音TTS

最近要做一些普通话和方言demo

找一个免费工具

免费在线文字转语音工具 | edge-tts 在线体验 (bingal.com)

还有一些方言在阿里云上找了下,基于官方demo改了一下

阿里云语音合成接口说明_智能语音交互(ISI)-阿里云帮助中心 (aliyun.com)

如何下载安装、使用语音合成PythonSDK及代码示例_智能语音交互(ISI)-阿里云帮助中心 (aliyun.com)

# -*- coding: UTF-8 -*-

import time
import threading
import sys

import nls

URL="wss://nls-gateway-cn-shanghai.aliyuncs.com/ws/v1"
TOKEN="xxx"  #参考https://help.aliyun.com/document_detail/450255.html获取token
APPKEY="xxx"       #获取Appkey请前往控制台:https://nls-portal.console.aliyun.com/applist



TEXT=['这是第一条测试语料,请欣赏','这是第二条测试语料,请欣赏']

#以下代码会根据上述TEXT文本反复进行语音合成
class TestTts:
    def __init__(self, tid, test_file):
        self.__th = threading.Thread(target=self.__test_run)
        self.__id = tid
        self.__test_file = test_file
   
    def start(self, text):
        self.__text = text
        self.__f = open(self.__test_file, "wb")
        self.__th.start()
    
    def test_on_metainfo(self, message, *args):
        print("on_metainfo message=>{}".format(message))  

    def test_on_error(self, message, *args):
        print("on_error args=>{}".format(args))

    def test_on_close(self, *args):
        print("on_close: args=>{}".format(args))
        try:
            self.__f.close()
        except Exception as e:
            print("close file failed since:", e)

    def test_on_data(self, data, *args):
        try:
            self.__f.write(data)
        except Exception as e:
            print("write data failed:", e)

    def test_on_completed(self, message, *args):
        print("on_completed:args=>{} message=>{}".format(args, message))


    def __test_run(self):
      	print("thread:{} start..".format(self.__id))
      	tts = nls.NlsSpeechSynthesizer(url=URL,
      	      	      	      	       token=TOKEN,
      	      	      	      	       appkey=APPKEY,
      	      	      	      	       on_metainfo=self.test_on_metainfo,
      	      	      	      	       on_data=self.test_on_data,
      	      	      	      	       on_completed=self.test_on_completed,
      	      	      	      	       on_error=self.test_on_error,
      	      	      	      	       on_close=self.test_on_close,
      	      	      	      	       callback_args=[self.__id])
      	print("{}: session start".format(self.__id))
      	r = tts.start(self.__text, voice="cuijie", aformat="mp3",speech_rate=-250)
      	print("{}: tts done with result:{}".format(self.__id, r))

def multiruntest(num):
    for i in range(0, num):
        name = "thread" + str(i)
        t = TestTts(name, "tests/output_tts"+str(i)+".mp3")
        t.start(TEXT[i])
    
nls.enableTrace(True)
multiruntest(2)


<think>好的,用户想了解如何通过小智AI实现在线语音点歌的实现方式。首先,我需要明确用户提到的“小智AI”具体指哪个平台或工具。根据提供的参考引用,用户提到了DeepSeek和Cherry Studio的组合,但引用内容主要涉及电商运营AI助手,可能与语音点歌功能没有直接关联。不过,我可以基于通用的AI语音交互技术来构建实现方案。 接下来,我需要分析在线语音点歌的基本流程。通常,这类功能涉及语音输入、语音识别、意图理解、音乐搜索与播放等步骤。因此,实现方式可能包括以下几个模块: 1. **语音采集模块**:用户通过麦克风输入语音指令,需要调用设备的录音功能,可能涉及前端开发技术,如Web Audio API或移动端的录音SDK。 2. **语音识别(ASR)**:将用户的语音换为文本。这里需要集成第三方语音识别服务,如DeepSeek的ASR接口、百度语音识别或阿里云语音服务。 3. **自然语言处理(NLP)**:解析文本中的意图,例如识别用户想听的歌曲名称、歌手或操作指令(如“播放”、“暂停”)。可能需要训练一个意图分类模型,或使用现有的NLP工具。 4. **音乐检索与播放**:根据解析出的歌曲信息,从音乐库或第三方API(如QQ音乐、网易云音乐)获取歌曲资源,并实现播放功能。这需要处理API调用、流媒体播放等技术。 5. **语音反馈(TTS)**:可选功能,使用文本语音技术给予用户反馈,如确认播放的歌曲名称。 在技术选型方面,用户提到了DeepSeek,可能可以利用其提供的AI模型进行语音识别和NLP处理。同时,结合Cherry Studio作为开发平台,可以快速搭建应用界面和集成API。需要检查DeepSeek是否提供相关的ASR和NLP接口,或者是否需要结合其他云服务。 另外,需要考虑系统的实时性和准确性,尤其是在嘈杂环境下的语音识别效果。可能需要进行降噪处理,或选择高精度的ASR服务。同时,音乐版权的合法性也是一个重要因素,必须确保使用的音乐API具有合法的授权。 最后,测试和优化是关键环节。需要模拟不同场景下的用户指令,调整NLP模型以提高意图识别的准确率,并优化播放器的用户体验,如缓冲速度和交互反馈。 总结来说,实现步骤大致为:语音输入→语音文本→解析意图→搜索歌曲→播放反馈。每个环节都需要选择合适的技术工具,并确保各模块之间的顺畅集成。</think>### 小智AI在线语音点歌实现方式 #### 一、技术实现流程 1. **语音输入采集** - 使用浏览器/移动端API(如`Web Audio API`、`Android AudioRecord`)采集用户语音输入 - 示例代码片段: ```javascript navigator.mediaDevices.getUserMedia({ audio: true }) .then(stream => { const mediaRecorder = new MediaRecorder(stream) }) ``` 2. **语音识别(ASR)** - 调用语音识别接口(可集成DeepSeek ASR API或第三方服务) - 关键参数示例: ```python response = deepseek.asr.recognize( audio_file=audio_data, language="zh-CN", model="general_v2" ) ``` 3. **语义理解(NLP)** - 使用正则表达式或NLP模型解析指令: $$ P(intent|text) = \frac{e^{W_{intent} \cdot h_{text}}}{\sum e^{W_i \cdot h_{text}}} $$ - 典型指令模式:`播放[周杰伦的七里香]` 4. **音乐检索与播放** - 对接音乐API(需确保版权合规): ```python def search_music(keywords): params = { "keyword": keywords, "type": "song", "limit": 10 } return requests.get(MUSIC_API, params=params) ``` #### 二、核心技术栈 | 模块 | 推荐方案 | 备注 | |-------|---------|-----| | 语音识别 | DeepSeek Speech[^1]/阿里云ASR | 支持中文方言识别 | | 语义理解 | Rasa框架/BERT模型 | 需要训练领域语料 | | 音乐服务 | 网易云API/腾讯音乐API | 需申请开发者资质 | #### 三、优化策略 1. **降噪处理**:添加WebAudio动态噪声抑制 $$ y(t) = x(t) - \alpha \cdot \hat{n}(t) $$ 2. **容错机制**:建立近音词映射表(如"七里香"→"七裏香") 3. **缓存策略**:预加载高频歌曲资源
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值