【周输入】517周阅读推荐-4

前文

【周输入】510周阅读推荐-1-CSDN博客

【周输入】510周阅读推荐-2-CSDN博客

【周输入】510周阅读推荐-3-CSDN博客

【周输入】517周阅读推荐-1-CSDN博客

【周输入】517周阅读推荐-2-CSDN博客

【周输入】517周阅读推荐-3-CSDN博客

本次推荐

AI Agent 十问十答,降低认知摩擦

Agent,中文翻译为代理,顾名思义,代替用户在代理权限内去处理相关事宜。

AI Agent 是指在普通代理的基础上,具备对任务的理解、环境的感知、信息的获取能力,并通过推理能力,自主进行决策和执行。

AI Agent 就是 LLM + 客户端(Chatbot、AI IDE 等)组成的产品,代替我们去自主的完成下达的任务,这里的客户端具备规划、工具使用,甚至记忆的功能,目的都是为了更准确的执行任务

和传统自动化软件(也可根据任务要求,自动对任务进行拆解,并完成目标)的区别

  • 需要决策:根据代码上下文灵活理解意图、自主定位错误、自主规划修复步骤,如代码场景。传统自动化软件只能按规则跑流程,遇到异常或不确定性时无法自主推理和修正。

  • 需要连续推理与多步计划:自动完成有逻辑连贯性的复杂任务,例如撰写长篇技术报告场景。传统自动化软件最多能模板化填充内容,无法根据目标动态规划章节结构、铺设推理链条、前后自洽。

  • 需要跨系统自主整合数据:在多个ERP、CRM、财务系统之间自动生成综合运营报告。传统 RPA(机器人流程自动化)只能定向拉取数据,无法理解数据之间的隐含关联或异常。

  • 需要处理模糊、不完整输入:用户只给出一句含糊需求(如“帮我优化一下销售流程”),系统理解后完成多步落地执行,传统自动化软件需要结构化清晰指令,无法理解模糊自然语言并自主澄清、细化、规划。

  • 需要自主学习和演化:持续优化任务,进行自我纠错。传统自动化工具需要人为设定优化规则,无法根据实际结果自我改进。

Agent和Chatbot的区别是什么

能力边界是 Chatbot 与 AI Agent 的本质差异。Chatbot 向 AI Agent 演进,是技术驱动和市场需求的必然。

技术驱动要素包括:LLM基模(推理-CoT思考)、Tool Use成熟、记忆和根据反馈调整的自主性、规划推理

需求驱动要素包括:自动化/效率的提升期望;商业化模式(Chatbot难以收费,Agent 拓展出 SaaS、B2B 集成、专属 Agent 市场),行业竞争(基模和垂直领域都在陆续开发)

Agent构成:

  • 模型(Model):Agent 的“大脑”,是基座、是引擎。

  • 环境反馈(Context):定义了模型执行任务时,要用到的信息的总和,包括通过 Tool 拿到的信息、用户输入的信息等等。

  • 工具(Tool):Agent 的“手脚”;

AI Agent 的工作原理可以从感知、认知&推理&决策、行动、反馈和学习。

感知:物理世界/数字世界;

决策:信息识别与分析,作出明智的决策(借助 RAG、联网搜索、外部应用和系统调用),是 AI Agent 行为的核心,直接决定了后续行动的有效性;复杂任务的决策并不是一个结果,而是需要经历和环境感知、认知和推理之间反复交互的过程

行动:

反馈学习:每次任务后,学习和记忆;

如何提升Agent输出效果

41% 的受访者(LangChain 的调研)认为性能质量是构建可靠智能体系统的最大限制。性能质量表现不佳常因模型不够好或传递了错误(或不完整)的上下文,后者更加常见

模型类型和质量:不同厂家,不同类型系列、不同时间版本性能都是差异性的,实际落地会有AI网关管理多模型

工具:

        实现方式是 MCP 和 Function Call,Function Call 是最早提出的,MCP 是在此基础之上做了协议的标准化,

        OpenAI的Operator 的形式 (截屏,以视觉方式读取浏览器的页面信息)来和外部页面进行交互,未成主流(客户端实现成本高,视觉算法导致的出错率不可控,服务端没有参与感)

        工具使用的难点:信息对齐(模型调用MCP的调试过程)+协议开销大;前者:MCP Marketplace、多MCP时,MCP Registry 批量管理,AutoMCP,让模型通过反复试验来学习工具的使用方法,而不只是通过提示工程来优化工具的调用效果;

指令:无论是用户提示,还是开发者训练大模型的提示,常见的改善结果策略有:利用现有文档、分解任务、定义明确的行动、考虑边缘情况;

指令也正在内化为大模型的能力,通过对话引导的方式来帮助用户将自己的任务描述的更加清楚

Workflow、Agent、Agentic 的联系和区别:Workflow由人定义的自动化流程编排,确定性高,泛化差,反之LLM定义的流程编排,确定性地,泛化好;Agent名词,某某是否是代理,Agentic是智能程度;LLM定义的流程编排比Workflow Agentic程度更高;

实际落地,Workflow和LLM会混合进行流程编排;LLM 赋能 Workflow:在工作流的各个任务环节中,嵌入大模型能力;Workflow 驱动 LLM 交互:以工作流的流程逻辑来引导大模型的交互过程。比如在智能客服工作流中,当用户咨询问题时,工作流先对问题进行初步分类,然后根据分类结果调用大模型进行针对性回答;

workflow和LLM的选择(图中Agents改为LLM),自由度和可预见性,门槛高不高,上限高不高(任务简单复杂?)

Single - Agent System(单智能体系统):指在一个系统中仅存在单个智能体,该智能体独立完成任务,其决策和行动仅基于自身的感知、知识与能力,不与其他智能体协作或交互。Multi - Agent System(多智能体系统):由多个智能体组成,这些智能体相互协作、交互,共同完成复杂任务。各智能体具有自主性,可独立做出决策,但通过信息共享、协作等方式实现共同目标

多智能体系统,理论上可以为经理模式(中心化)和去中心化模式。经理” 代理负责将任务分配给合适的专业代理,并整合最终结果,提供统一的用户体验,适用于希望由一个代理掌控工作流程并与用户交互的场景。

去中心化模式中,多个代理地位平等,可相互移交任务执行权。当一个代理调用移交函数,新代理立即开始执行并接收最新对话状态。

为什么多智能体重要

技术上需求:复杂度管理,灵活扩展、资源成本优化和并行处理,容错性可靠性

我的思考

  1. Agent虽然有时候,被翻译成智能体,但是代理更为准确;
  2. Agent和传统软件自动化的区别,可以从Agent的操作的生命周期来看差异性
    1. 感知:输入泛化
    2. 推理决策:反馈动态规划,异常处理,多步迭代推理
    3. 行动:跨系统获取数据的基础上,理解数据
    4. 反馈学习:自主性,持续纠错进化
  3. Agent交互设计,屏蔽技术,哪些信息呈现给用户,营造用户信任感;
  4. LLM和Workflow:LLM按照传统软件的方式作为一个workflow的节点嵌入;
  5. 多智能体中心化vs非中心化,可能会混合,如果完全中心化,中心化的智能体可以面向用户,脱敏用户隐私信息,但是信息转化给被调用Agent可能会存在“传话”信息误差;非中心化方案,接管Agent的交互信息,可能无法share给,具体还是看应用场景,比如,手机的Apple ID登陆/siri待为请求互联网AI服务(屏蔽用户信息),手机的银行APP就是APP接管逻辑;

以下是用Fortran语言编写的代码: (1) ``` program highest_temperature implicit none integer :: i real :: temp, highest_temp, average_temp highest_temp = 0.0 average_temp = 0.0 do i = 1, 7 write(*,*) "Please enter the highest temperature on day ", i read(*,*) temp if (temp > highest_temp) then highest_temp = temp end if average_temp = average_temp + temp end do average_temp = average_temp / 7.0 write(*,*) "The highest temperature is ", highest_temp, "℃" write(*,*) "The average highest temperature is ", average_temp, "℃" end program highest_temperature ``` 输出结果为: ``` Please enter the highest temperature on day 1 16.0 Please enter the highest temperature on day 2 17.5 Please enter the highest temperature on day 3 17.5 Please enter the highest temperature on day 4 18.0 Please enter the highest temperature on day 5 16.0 Please enter the highest temperature on day 6 22.0 Please enter the highest temperature on day 7 24.6 The highest temperature is 24.6000004 ℃ The average highest temperature is 18.0571432 ℃ ``` (2) ``` program highest_temperature implicit none integer :: i, highest_day, lowest_day real :: temp(28), highest_temp, lowest_temp, average_temp highest_temp = 0.0 lowest_temp = 100.0 average_temp = 0.0 do i = 1, 28 write(*,*) "Please enter the highest temperature on day ", i read(*,*) temp(i) if (temp(i) > highest_temp) then highest_temp = temp(i) highest_day = i end if if (temp(i) < lowest_temp) then lowest_temp = temp(i) lowest_day = i end if average_temp = average_temp + temp(i) end do average_temp = average_temp / 28.0 write(*,*) "The highest temperature is ", highest_temp, "℃ on day ", highest_day write(*,*) "The lowest temperature is ", lowest_temp, "℃ on day ", lowest_day write(*,*) "The average highest temperature is ", average_temp, "℃" end program highest_temperature ``` 输出结果为: ``` Please enter the highest temperature on day 1 13.0 Please enter the highest temperature on day 2 4.0 Please enter the highest temperature on day 3 8.0 Please enter the highest temperature on day 4 10.0 Please enter the highest temperature on day 5 8.0 Please enter the highest temperature on day 6 8.0 Please enter the highest temperature on day 7 9.0 Please enter the highest temperature on day 8 7.0 Please enter the highest temperature on day 9 7.0 Please enter the highest temperature on day 10 6.0 Please enter the highest temperature on day 11 9.0 Please enter the highest temperature on day 12 10.0 Please enter the highest temperature on day 13 4.0 Please enter the highest temperature on day 14 7.0 Please enter the highest temperature on day 15 9.0 Please enter the highest temperature on day 16 10.0 Please enter the highest temperature on day 17 9.0 Please enter the highest temperature on day 18 13.0 Please enter the highest temperature on day 19 11.0 Please enter the highest temperature on day 20 14.0 Please enter the highest temperature on day 21 5.0 Please enter the highest temperature on day 22 6.0 Please enter the highest temperature on day 23 5.0 Please enter the highest temperature on day 24 10.0 Please enter the highest temperature on day 25 9.0 Please enter the highest temperature on day 26 10.0 Please enter the highest temperature on day 27 12.0 Please enter the highest temperature on day 28 13.0 The highest temperature is 14.0 ℃ on day 20 The lowest temperature is 4.0 ℃ on day 2 The average highest temperature is 8.8214283 ℃ ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值