tensorflow随笔-正则化与指数衰减率

指数衰减率
先用较大的学习率快速迭代,得到一个较优的解。然后,指数衰减法生效,随着迭代的继续逐步减少学习率,这样,可以得到更稳定的解。
decayed_learning_rate=learning_rate*decay_rate^(global_step/decay_steps)
decay_rate衰减系数
decay_steps衰减速度
当staircase为True,则global_step/decay_steps为整数(学习率下降阶梯),否则为浮点数(学习率下降平滑)。

globalStep=tf.Variable(0)
learningRate=tf.train.exponential_decay(0.1,globalStep,100,0.96,staircase=True)
learningStep=tf.train.GradientDescentOptimizer(learningRate).minimize(losss,global_step=globalStep)
正则化
正则化可避免过拟合,模型的复杂程度,由神经网络的所有参数决定,w和b,一般是由权重w决定。
1.L1正则化
L1:
在这里插入图片描述

L2:
在这里插入图片描述
L1使参数变得稀疏,很多参数会为0,这样,可以达到类似特征提取的作用。L1不可导。
L2公式可导,所以对其优化更简洁,但其没有稀疏作用。
可将2个正则化一起使用
在这里插入图片描述

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值