Guided Filter对三维点云降噪

同步更新于github page

Guided Filter点云降噪

Guided Filter一般用来对2D图像进行降噪等处理,实际上,稍作修改后可以对3D点云进行降噪。

从Guided Filter的基本假设出发,可以推导出针对3D数据的处理方法。这里仅考虑引导数据是点云本身的情况。

首先,根据局部线性假设,有

q i = A k p i + b k q_i=A_kp_i+b_k qi=Akpi+bk

其中 q i q_i qi是滤波后输出的三维点, p i p_i pi是当前需要滤波的点(即算法的输入), A k A_k Ak是一个3x3矩阵, b k b_k bk是3x1向量。

我们希望这个局部线性模型,在 p i p_i pi的领域内有最小的重建误差,即

arg min ⁡ A k , b k ∑ j ∈ N ( i ) ( ∥ A k p j + b k − p j ∥ 2 + ϵ ∥ A k ∥ 2 ) \text{arg}\min_{A_k, b_k}\sum_{j\in N(i)}(\Vert A_kp_j+b_k - p_j\Vert^2+\epsilon\Vert A_k\Vert^2) argAk,bkminjN(i)(Akpj+bkpj2+ϵAk2)

用上式分别对 A k A_k Ak b k b_k bk

### Realsense 进行三维点重建的方法 Realsense 是 Intel 提供的一种深度相机设备,可以用于获取高质量的深度图像和彩色图像。通过这些数据,可以实现三维点的重建。以下是关于如何使用 Realsense 设备进行三维点重建的具体说明。 #### 1. 获取深度数据与 RGB 数据 Realsense 摄像头可以通过 USB 接口连接到计算机,并利用官方提供的 SDK (Intel RealSense SDK 2.0) 来捕获深度图和彩色图。SDK 支持多种编程语言接口,包括 Python 和 C++。为了获得精确的点云数据,需要同步采集深度帧和颜色帧[^4]。 ```python import pyrealsense2 as rs import numpy as np import cv2 # 配置管道并启动流 pipeline = rs.pipeline() config = rs.config() # 启动摄像头配置 config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30) config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30) pipeline.start(config) ``` #### 2. 转换为点云 一旦获得了深度图和彩色图,就可以将其转换成点云形式。RealSense SDK 中提供了 `rs.pointcloud` 类来简化这一过程。该类会自动将像素坐标映射至世界空间中的三维点位置[^5]。 ```python pc = rs.pointcloud() # 创建点云对象 frames = pipeline.wait_for_frames() # 等待下一组帧到达 depth_frame = frames.get_depth_frame() color_frame = frames.get_color_frame() points = pc.calculate(depth_frame) # 计算点云 vtx = np.asanyarray(points.get_vertices()) # 获取顶点数组 tex_coords = np.asanyarray(points.get_texture_coordinates()) ``` #### 3. 噪声过滤与优化 由于实际环境中可能存在光线干扰或其他因素影响测量精度,因此通常会对原始点云执行一些预处理步骤以提高质量。例如,可采用双边滤波器(Bilateral Filter)或者引导滤波器(Guided Filter)减少噪声的影响[^3]。 ```python decimate = rs.decimation_filter() # 下采样滤波器 spatial = rs.spatial_filter() # 空间边缘保持平滑化滤波器 temporal = rs.temporal_filter() # 时间域上的去噪和平滑化滤波器 filtered_depth = decimate.process(depth_frame) filtered_depth = spatial.process(filtered_depth) filtered_depth = temporal.process(filtered_depth) ``` #### 4. 可视化点云 最后一步是对生成好的点云数据进行可视化展示。OpenCV 或者 PCL 库都可以用来绘制三维图形界面以便观察结果。 ```python from open3d import * point_cloud = PointCloud() xyz = np.asarray(vtx).view(np.float32).reshape(-1, 3)[:, :3] point_cloud.points = Vector3dVector(xyz) draw_geometries([point_cloud]) ``` --- ###
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值