按照层次遍历结果打印完全二叉树

按照层次遍历结果打印完全二叉树

在这里插入图片描述

按照推论结果:

  • l 层首个节点位置 2h-l - 1
  • l 层节点间距:2h-l+1 - 1

编码实现

 public static<E> void print(BinaryTree<E> tree) {
        List<List<Node<E>>> levelNodeList = levelOrderTraversal(tree);
        int height = levelNodeList.size();
        for (int level = 1; level <= height; level++) {
            List<Node<E>> nodelist = levelNodeList.get(level - 1);
            // 打印首个节点
            int firstNodePosition = (int) Math.pow(2, (height - level)) - 1;
            System.out.print(getBlankSpace(firstNodePosition) + nodelist.get(0).element);

            int separation = (int)Math.pow(2, (height-level+1)) - 1;
            String separationBlankSpace = getBlankSpace(separation);
            for (int i = 1; i < nodelist.size(); i++) {
                // 打印中间节点
                System.out.print(separationBlankSpace + nodelist.get(i).element);
            }
            System.out.println();
        }
    }

    public static<E>List<List<Node<E>>> levelOrderTraversal(BinaryTree<E> tree) {
        Queue<Node<E>> queue = new LinkedList<>();
        queue.offer(tree.root);
        List<List<Node<E>>> result = new ArrayList<>();
        while (!queue.isEmpty()) {
            // 此时队列的容量就是当前层的节点个数
            int levelSize = queue.size();
            ArrayList<Node<E>> levelNodes = new ArrayList<>();
            for (int i = 0; i < levelSize; i++) {
                Node<E> node = queue.poll();
                levelNodes.add(node);

                if (node.left != null) {
                    queue.offer(node.left);
                }

                if (node.right!= null) {
                    queue.offer(node.right);
                }
            }

            result.add(levelNodes);
        }

        return result;
    }

    private static String getBlankSpace(int n) {
        StringBuilder builder = new StringBuilder();
        while (n > 0) {
            builder.append(" ");
            n--;
        }

        return builder.toString();
    }

打印效果

在这里插入图片描述

似乎更预想的不一样,猜测是因为 像 11,12这种两位数实际占了两个字符,导致的。将所有数都改成 1:

在这里插入图片描述

显示完美。

将空格改为 \t

在这里插入图片描述

显示还是有问题。考虑将最后一层间距修改为 2,通过双 \t 控制显示格式

在这里插入图片描述

完整代码

package com.wy.algo.tree;

import cn.hutool.core.lang.Assert;

import java.util.*;
import java.util.stream.IntStream;
import java.util.stream.Stream;

/**
 * @author HelloWorld
 * @date 2024/1/2 18:32
 * @email helloworld.dng@gmail.com
 */
public class BinaryTree<E> {
    public static void main(String[] args) {
        BinaryTree<Integer> binaryTree = init(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
        //BinaryTree<Integer> binaryTree = init(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1);
        print(binaryTree);
    }
    Node<E> root;

    /**
     * @description 初始化二叉树(层次遍历)
     * @author HelloWorld
     * @create 2024/1/2 18:57
     * @param elements
     * @return com.wy.algo.tree.BinaryTree<E>
     */
    @SafeVarargs
    public static<E> BinaryTree<E> init(E... elements) {
        Assert.notEmpty(elements, "elements must not be empty");
        BinaryTree<E> tree = new BinaryTree<>();
        tree.root = new Node<>(elements[0]);

        Queue<Node<E>> queue = new LinkedList<>();
        queue.offer(tree.root);
        int index = 1;
        while (!queue.isEmpty()) {
            Node<E> node = queue.poll();
            if (index < elements.length) {
                node.left = new Node<>(elements[index]);
                queue.offer(node.left);
            }
            index++;

            if (index < elements.length) {
                node.right = new Node<>(elements[index]);
                queue.offer(node.right);
            }
            index++;
        }

        return tree;
    }


    public static<E> void print(BinaryTree<E> tree) {
        List<List<Node<E>>> levelNodeList = levelOrderTraversal(tree);
        int height = levelNodeList.size();
        for (int level = 1; level <= height; level++) {
            List<Node<E>> nodelist = levelNodeList.get(level - 1);
            // 打印首个节点
            int firstNodePosition = (int) Math.pow(2, (height - level)) - 1;
            System.out.print(getBlankSpace(firstNodePosition) + nodelist.get(0).element);
            // 优化显示效果,将间距修改为2
            int separation = (int)Math.pow(2, (height-level+1));
            String separationBlankSpace = getBlankSpace(separation);
            for (int i = 1; i < nodelist.size(); i++) {
                // 打印中间节点
                System.out.print(separationBlankSpace + nodelist.get(i).element);
            }
            System.out.println();
        }
    }

    public static<E>List<List<Node<E>>> levelOrderTraversal(BinaryTree<E> tree) {
        Queue<Node<E>> queue = new LinkedList<>();
        queue.offer(tree.root);
        List<List<Node<E>>> result = new ArrayList<>();
        while (!queue.isEmpty()) {
            // 此时队列的容量就是当前层的节点个数
            int levelSize = queue.size();
            ArrayList<Node<E>> levelNodes = new ArrayList<>();
            for (int i = 0; i < levelSize; i++) {
                Node<E> node = queue.poll();
                levelNodes.add(node);

                if (node.left != null) {
                    queue.offer(node.left);
                }

                if (node.right!= null) {
                    queue.offer(node.right);
                }
            }

            result.add(levelNodes);
        }

        return result;
    }

    private static String getBlankSpace(int n) {
        StringBuilder builder = new StringBuilder();
        while (n > 0) {
            builder.append("\t");
            n--;
        }

        return builder.toString();
    }


    /**
     * @description 根据节点个数,计算完全二叉树的高度
     * @author HelloWorld
     * @create 2024/1/2 19:48
     * @param nodeNums
     * @return int
     */
    public static int getHeight(int nodeNums) {
        int level = 1;
        while (!(Math.pow(2, level - 1) <= nodeNums && Math.pow(2, level) > nodeNums)) {
            level++;
        }

        return level;
    }


    static class Node<E> {
        E element;
        Node<E> left;
        Node<E> right;

        public Node(E element) {
            this.element = element;
            this.left = null;
            this.right = null;
        }
    }
}
### 图的广度优先遍历与二叉树层次遍历的关系 #### 相似性分析 图的广度优先遍历(BFS)和二叉树的层次遍历在本质上都属于一种基于队列的数据结构实现的算法。两者的核心思想是从起始点出发,逐层访问相邻节点或子节点,直到所有可达节点都被访问完毕。这一过程体现了相同的逻辑框架:先访问当前层的所有节点,再依次访问下一层的节点[^1]。 在具体实现上,无论是图还是二叉树,都需要借助一个辅助队列来存储待访问的节点。对于图而言,由于可能存在环路或者重复连接的情况,通常还需要额外设置一个布尔型数组 `visited` 来记录哪些节点已经访问过,从而避免无限循环;而对于二叉树来说,则不存在这样的问题,因为每棵二叉树中的节点至多有两个孩子节点,并且不会形成回路[^4]。 以下是两者的共同特点总结: - **按层访问**:均采用自顶层向下的方式逐一扫描每一层上的全部元素; - **依赖队列机制**:利用先进先出(FIFO)原则管理待处理项列表; - **终止条件一致**:当队列为空时表示已完成整个结构体的遍历操作。 #### 实现方法对比 ##### 1. 图的广度优先遍历 (Graph BFS) 下面给出了一种标准C++版本的图BFS伪代码表示: ```cpp #include <queue> using namespace std; vector<vector<int>> adj; // 邻接表形式表示图形 bool vis[adj.size()]; // 访问标志位初始化为false void bfs(int startNode){ queue<int> q; memset(vis, false, sizeof(vis)); // 清零已访问标记 q.push(startNode); vis[startNode]=true; while (!q.empty()){ int u=q.front();q.pop(); cout<<u<<" "; // 输出当前结点 for(auto &v : adj[u]){ if(!vis[v]){ q.push(v); vis[v]=true;// 设置新加入队列的顶点已被访问 } } } } ``` 此函数接受参数`startNode`作为起点执行完整的BFS流程[^3]。 ##### 2. 二叉树的层次遍历(Binary Tree Level Order Traversal) 同样提供一段Python风格的例子用于展示如何完成一颗完全二叉树的高度有序打印功能: ```python from collections import deque class TreeNode: def __init__(self,val): self.val=val self.left=None self.right=None def level_order_traversal(root): result=[] if not root:return [] que=deque([root]) while que: size=len(que) temp_level_values=[] for _ in range(size): node=que.popleft() if node is None:continue temp_level_values.append(node.val) if node.left:que.append(node.left) if node.right:que.append(node.right) result.extend(temp_level_values) return result ``` 这里定义了一个简单的类`TreeNode`,用来构建测试用例所需的样本数据集。随后通过双端队列(deque)模拟FIFO行为,在每次迭代过程中动态调整容器内的成员构成直至结束为止[^2]。 --- ### 结论 综上所述,尽管图的广度优先搜索(BFS)以及二叉树的层次遍历(Level-order traversal)分别适用于不同类型的抽象数据类型之上,但是它们共享着极为类似的运作机理—即依靠队列的支持逐步展开邻近区域的信息采集工作流。因此可以说前者可以看作后者的一个泛化推广版实例应用案例之一而已!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值