自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(78)
  • 收藏
  • 关注

原创 终端代码记录

我在服务器上跑代码,记录一些终端代码,省了以后查找;nvidia-smi

2020-10-09 14:36:45 442

原创 python安装gdal (No module named ‘osgeo‘)(ERROR: Failed building wheel for gdal)

你是不是用了?pip install gdal安装gdal。解决办法1:1.不用手动下载文件,直接执行以下命令即可conda install gdal解决办法2:根据自己的python版本,下载对应的GDAL安装文件2.1.官网下载,下载地址:https://www.lfd.uci.edu/~gohlke/pythonlibs/#gdal可能下载缓慢,或下载失败2.2 网盘下载:GDAL-2.2.4-cp36-cp36m-win_amd64.whl和GDAL-2.2.4-cp37-cp

2021-12-05 14:44:04 10472 3

原创 (GTX3090 tensorflow2.4 2.5 CUDA 11.0 配置心得 )之《我的时间是怎么浪费的》

开题:gtx3090 cuda 11.0 tensorflow 2.4 2.5 这些版本我没配置成功。从泰坦显卡转战3090,今天下午配置环境。先是安装了TF2.2.没想到只能调用CPU训练。于是我安装 tf2.4 以及没发布的tf2.5.均未果。以下是我尝试的一些方法:首先安装官网给出的步骤,安装TF2.4pip install tensorflow==2.4.0跑代码,结果出现如下报错:Your CUDA software stack is old. We fallback to

2021-04-23 17:37:13 2552 1

原创 opencv imread()默认加载三通道图像

今天用python opencv 函数 cv2.imread加载图像。图像是单通道的但是加载完之后就变成三通到了。处理了半天的bug才发现是这里出现了问题。介绍一下imread函数:c++函数模型#include <opencv2/imgcodecs.hpp>Mat cv::imread(const String & filename,int flags = IMREAD_COLOR ) import cv2image= cv2.imread( filename,[fla

2021-04-21 11:43:48 3559 2

原创 ImportError: cannot import name ‘TFAutoModelForSequenceClassification‘ from ‘transformers‘ (unknown

解决安装 tensorflow 2.1和使用的包不匹配的的问题https://github.com/AdneneBoumessouer/MVTec-Anomaly-Detection这个项目要求安装 tensorflow 2.1但是在安装`pip install ktrain“之后运行train.py 文件时,出现transformers 版本不匹配的问题报错原因是使用tensorflow 2.1 transformers必须降到 3.1 版本,可是默认是4.0+版本。https://git

2021-04-14 12:49:10 3509

原创 python 实现随机数

Python3实现随机数,供大家参考,具体内容如下random是用于生成随机数的,我们可以利用它随机生成数字或者选择字符串。random.seed(x)改变随机数生成器的种子seed。一般不必特别去设定seed,Python会自动选择seed。random.random() 用于生成一个随机浮点数n,0 <= n < 1random.uniform(a,b) 用于生成一个指定范围内的随机浮点数,生成的随机整数a<=n<=b;random.randint(a,b)用于生成

2021-04-10 17:30:45 648

原创 电脑开机无logo,进不了bios

WINDOWS开机直接进入欢迎,没有LOGO,也无法进入BIOS。由于需要安装UBANTU等虚拟系统,所以要设置BIOS,但是电脑没有UEFI设置,无法通过控制面板那块进去BIOS设置。许多博客方法有:重装系统拔掉主板电池取消快速开机但是我这都不管用。https://blog.csdn.net/gyh3313/article/details/81082020?utm_source=apphttps://blog.csdn.net/gyh3313/article/details/8108202

2021-04-09 15:31:41 10329

原创 c++ 中NULL和nullptr的区别

NULL在C++中就是0,这是因为在C++中void* 类型是不允许隐式转换成其他类型的,所以之前C++中用0来代表空指针,但是在重载整形的情况下,会出现上述的问题。所以,C++11加入了nullptr,可以保证在任何情况下都代表空指针,而不会出现上述的情况,因此,建议以后还是都用nullptr替代NULL吧,而NULL就当做0使用。————————————————版权声明:本文为CSDN博主「csu_zhengzy~」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

2021-03-28 16:37:02 250

原创 paddle dectection rcnn模块

这个课没有讲的很细节,自己也没读过论文。建议看其他资料

2021-03-16 21:58:20 194

原创 paddle dectection yolov3模块复习

下面那个是可以生成毛框的脚本,paddle以后可能会用到。若果两个离的近的物体所对应的真实框落在了同一个网格,那么后y-true的grid cell 去类别信息,只会找到后者。yolov3不适合检测离得近的群体目标。这个应该是在预测阶段。...

2021-03-10 15:01:07 216

原创 动手学深度学习第五章

5.1def corr2d(X, K): h, w = K.shape Y = tf.Variable(tf.zeros((X.shape[0] - h + 1, X.shape[1] - w +1))) for i in range(Y.shape[0]): for j in range(Y.shape[1]): Y[i,j].assign(tf.cast(tf.reduce_sum(X[i:i+h, j:j+w] * K), dtype

2021-02-21 20:09:55 649

原创 Jupyter Notebook 找不到虚拟环境

近期我在使用tensorflow 2.0,利用Jupyter Notebook 运行代码,发现只能找到以前创建的keras 环境。找到如下的解决方法:conda install nb_conda这里注意,需要到指定的虚拟环境下安装。例如找不到TF2.0。就到TF2.0的虚拟环境下安装。conda install ipykernel #如果缺少这个包也请下载...

2021-02-18 15:58:19 551

原创 str object has no attribute decode(keras,tensorflow)

在运行 keras 或者是 tensorflow的keras模块的时候总是回提示标题那句话。看其他博主的博客,是h5py模块版本过高的原因。处理方法:卸载这个高版本模块:pip uninstall h5py安装低版本:pip install h5py==2.10 -i https://pypi.tuna.tsinghua.edu.cn/simple/...

2021-02-15 17:01:20 377

原创 动手学深度学习第四章

4.1模型构造class MLP(tf.keras.Model): def __init__(self): super().__init__() self.flatten = tf.keras.layers.Flatten() # Flatten层将除第一维(batch_size)以外的维度展平 self.dense1 = tf.keras.layers.Dense(units=256, activation=tf.nn.relu)

2021-02-15 16:57:43 468

原创 动手学深度学习TF2.0第三章

第三章3.1线性回归1. 模型定义这个是线性回归。2. 模型训练1训练数据2定义损失函数3优化算法这里注意小批量随机梯度下降这段话注意第一句话3 3.1.2.2 矢量计算表达式主要介绍了矢量计算的有效性3.2 线性回归的从零开始实现%matplotlib inlineimport tensorflow as tffrom matplotlib import pyplot as pltimport random####生成数据集##num_inputs = 2n

2021-02-15 10:27:23 353 1

原创 《动手学深度学习》(TF2.0版)第二章

第二章import tensorflow as tfprint(tf.__version__)查看TF的版本2.2数据操作2.2.1 创建tensor创建tensorx = tf.constant(range(12))#constant 代表是常量的tensorprint(x.shape)xprint(x)len(x)#可以用len函数获取长度(12,)<tf.Tensor: id=0, shape=(12,), dtype=int32, numpy=array([

2021-02-03 11:33:57 319

原创 Latex Winedt 如何生成参考文献

打开BIB文件,把格式复制进去。打开TEX文档。点击Latex 之后打开.aux文件,然后点击Btex,然后,Latex,然后Latex。就可以了。

2021-01-31 21:01:02 1153

转载 AttributeError: ‘str‘ object has no attribute ‘decode‘

python3下列代码会报上边的错print(“Response:”, resp.text.decode(‘unicode_escape’))解决办法:print(“Response:”, resp.text.encode(‘utf-8’).decode(‘unicode_escape’))中间加上.encode(‘utf-8’)即可。问题原因:python3里面,字符串要先encode手动指定其为某一编码的字节码之后,才能decode解码。原文链接:https://blog.csdn.net

2021-01-24 17:22:06 220

原创 YOLO系列摘要

YOLOV3为什么叫 53 :因为有53个卷积,最后一个全连接层也算!这里是convolutional其实是conv+BN+leakyRElu这里的黑色框是个残差结构类似于这样:yolov3 由聚类算法生成了9 个 bounding box ,最后分别生成三个特征图,每个特征图份三个这里的虚线就是bounding box原文提到了逻辑回归,用到了二值交叉熵损失。蓝色框代表bounding box(锚框,聚类生成)绿色 是grond truth box黄色 是预测框每

2020-12-25 14:56:24 295

转载 TOP1 TOP5

top1----- 就是你预测的label取最后概率向量里面最大的那一个作为预测结果,如过你的预测结果中概率最大的那个分类正确,则预测正确。否则预测错误top5----- 就是最后概率向量最大的前五名中,只要出现了正确概率即为预测正确。否则预测错误。import numpy as npimport tensorflow.keras.backend as K# 随机输出数字0~9的概率分布output = K.random_uniform_variable(shape=(1, 10), low=0

2020-12-25 10:08:14 461

原创 python 代码记录

assert len(images) == len(segmentations)#判断长度是否相等怎么增加 维数 train_image_data_r = train_image_data_r [:, : ,: ,np.newaxis] train_label_data_r =train_label_data_r [:, : ,: ,np.newaxis]通道转换label_data=cv2.cvtColor(label_data,cv2.COLOR_BGR2GRAY

2020-11-26 16:48:13 348

转载 深度学习超参数调正

在深度神经网络中,超参数的调整是一项必备技能,通过观察在训练过程中的监测指标如损失loss和准确率来判断当前模型处于什么样的训练状态,及时调整超参数以更科学地训练模型能够提高资源利用率。在本研究中使用了以下超参数,下面将分别介绍并总结了不同超参数的调整规则。(1)学习率学习率(learning rate或作lr)是指在优化算法中更新网络权重的幅度大小。学习率可以是恒定的、逐渐降低的,基于动量的或者是自适应的。不同的优化算法决定不同的学习率。当学习率过大则可能导致模型不收敛,损失loss不断上下震荡;学习

2020-11-19 15:47:11 407

原创 keras深度学习第四章(机器学习基础)

4.1 机器学习的四个分支4.1.1 监督学习监督学习是目前最常见的机器学习类型。给定一组样本(通常由人工标注),它可以学会将 输入数据映射到已知目标[也叫标注(annotation)]。图像领域监督学习分为:目标检测(object detection):给定一张图像,在图中特定目标的周围画一个边界框。这 个问题也可以表示为分类问题(给定多个候选边界框,对每个框内的目标进行分类)或分类与回归联合问题(用向量回归来预测边界框的坐标)。**图像分割(image segmentation):**给定一

2020-11-19 15:45:42 944

转载 深度学习网络不收敛的原因分析总结

很多同学会发现,为什么我训练网络的时候loss一直居高不下或者准确度时高时低,震荡趋势,一会到11,一会又0.1,不收敛。 又不知如何解决,博主总结了自己训练经验和看到的一些方法。首先你要保证训练的次数够多,不要以为一百两百次就会一直loss下降或者准确率一直提高,会有一点震荡的。只要总体收敛就行。若训练次数够多(一般上千次,上万次,或者几十个epoch)没收敛,则试试下面方法:1. 数据和标签数据分类标注是否准确?数据是否干净?数据库太小一般不会带来不收敛的问题,只要你一直在train总会收敛(rp

2020-11-18 16:07:44 7458 3

原创 keras深度学习摘要(第二章)

3.1 神经网络剖析前面几章介绍过,训练神经网络主要围绕以下四个方面。层,多个层组合成网络(或模型)。输入数据和相应的目标。损失函数,即用于学习的反馈信号。优化器,决定学习过程如何进行。3.1.1 层:深度学习的基础组件简单的向量数据保存在 形状为 (samples, features) 的 2D 张量中,通常用密集连接层[densely connected layer,也 叫全连接层(fully connected layer)或密集层(dense layer),对应于 Kera

2020-11-18 11:43:45 320

原创 keras对第一层输入尺寸的规定

1、Sequential情况下如果想要指定批次的大小,需要在第一层的输入形状中使用batch_input_shape而不能使用input_shape,因为input_shape不能指定批次的大小,批次只能为Noneinput_shape和batch_input_shape。input_shape 不包含批量大小,batch_input_shape是全情投入的形状,包括批量大小。2、函数式情况下Input参数shape: 一个尺寸元组(整数),不包含批量大小。A shape tuple (in

2020-11-18 10:21:14 1439

原创 keras摘录

Input():用来实例化一个keras张量Input(shape=None,batch_shape=None,name=None,dtype=K.floatx(),sparse=False,tensor=None)Input(shape=None,batch_shape=None,name=None,dtype=K.floatx(),sparse=False,tensor=None)#参数:shape: 形状元组(整型),不包括batch size。for instance, shape=(32

2020-11-18 09:17:49 186

原创 keras ReduceLROnPlateau和EarlyStopping

monitor:监测的值,可以是accuracy,val_loss,val_accuracyfactor:缩放学习率的值,学习率将以lr = lr*factor的形式被减少patience:当patience个epoch过去而模型性能不提升时,学习率减少的动作会被触发mode:‘auto’,‘min’,‘max’之一 默认‘auto’就行epsilon:阈值,用来确定是否进入检测值的“平原区”cooldown:学习率减少后,会经过cooldown个epoch才重新进行正常操作min_lr:学习率

2020-11-16 16:29:58 1289

原创 2020-11-15

使用gradient descent来训练模型的话都要在数据预处理步骤进行数据归一化。原因如下:根据反向传播公式:如果输入层 x 很大,在反向传播时候传递到输入层的梯度就会变得很大。梯度大,学习率就得非常小,否则会越过最优。在这种情况下,学习率的选择需要参考输入层数值大小,而直接将数据归一化操作,能很方便的选择学习率。而且受 x 和 w 的影响,各个梯度的数量级不相同,因此,它们需要的学习率数量级也就不相同。对 w1 适合的学习率,可能相对于 w2 来说会太小,如果仍使用适合 w1 的学习率,会导致在

2020-11-15 18:54:14 132

原创 matlab 如何画带箭头的曲线

函数如下:可以画二维三维,p0,p1分别为起点和终点function vectarrow(p0,p1)%Arrowline 3-D vector plot.% vectarrow(p0,p1) plots a line vector with arrow pointing from point p0% to point p1. The function can plot both 2D and 3D vector with arrow% depending on the dimens

2020-11-13 17:02:03 2536

原创 keras 如何设置多GPU训练

设置单卡训练。直接在终端:CUDA_VISIBLE_DEVICES=1 python train.py或者在程序开头:import osos.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]="0"#单卡os.environ["CUDA_VISIBLE_DEVICES"]="0,1,2"#多卡...

2020-11-13 10:05:06 463

原创 opencv python 灰度图转三通道彩色图

灰度图转RGBIMG_OUT = cv2.cvtColor(IMG_IN, cv2.COLOR_GRAY2RGB)

2020-11-12 17:22:15 7805 3

原创 gif的单帧图像批量转jpg图像

import cv2 as cvimport osall_file_dir = 'C:/Users/Terry/Desktop/car'infer_label_file = os.path.join(all_file_dir, "train_masks")infer_label_file1 = os.path.join(all_file_dir, "train_mask")infer_label_name = os.listdir(infer_label_file)print(infer_

2020-11-12 10:10:12 439

原创 keras深度学习摘要(第二章)

2.1一个小例子加载数据集from keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data()网路from keras import models from keras import layersnetwork = models.Sequential()network.add(layers.Dense(512, activation='relu

2020-11-10 10:42:29 781

原创 visio2019科学图形包的使用

这个 图形包适用于: 2019 2016的版本https://www.microsoft.com/zh-cn/download/confirmation.aspx?id=9136官网下载地址。下载下来需要解压!不要直接解压。解压方法:1解压:如需把d盘下abc.msi文件解包到目录d:\abc,操作如下:打开命令提示符(win+R)➡输入cmd➡回车键。命令行输入msiexec /a “d:\abc.msi” /qb TARGETDIR=“D:\abc”2然后:再运行Visio,可采用下

2020-11-05 16:07:35 14145 11

原创 python 如何遍历图像

pred 输入为 1* 2 * 256 * 256 的tensor pred = pred.numpy()#tensor转为数组 pred = np.squeeze(pred)#把第一维去掉 pred = np.transpose(pred, [1, 2, 0])#改变 维度顺序 256 * 256 * 2 pred0=pred[:,:,0] 取第一通道 pred0 = pred0 * 10 pred0 = np.array(pred0, np.uint8)

2020-11-05 15:18:59 5152 2

原创 python opencv数组转图片 并显示

pred是数组类型,先转为8位。pred = np.array(pred, np.uint8)cv2.imshow(“123”, pred)cv2.waitKey(0)

2020-11-04 16:38:47 5879

原创 用labelme软件 批量制作数据集(并划分数据集训练集)

首先单张制作的方法:1.首先激活labelme环境conda activate label#我label安装到label环境中,label是环境的名称2.找到labelme安装路径下的script,找到labelme_json_to_dataset.exe所在目录。cd F:\Anacondapy3.5\envs\label\Scripts 3.输入python labelme_json_to_dataset.exe C:\Users\Terry\Desktop\1123123\\1101

2020-10-28 16:28:51 1760

原创 读取with open as :读取文件的时候出现的问题

import codecsimport osdata_dir="./2020"label_file="label_list.txt"label_list = os.path.join(data_dir, label_file)with open(label_list, encoding='utf-8') as flist: print(flist.read()) lines = [line.strip() for line in flist] #print(lines

2020-10-27 15:59:48 621

原创 python split() strip()方法

最近在学习深度学习的数据读取的时候经常遇见这个函数。查阅相关知识记录如下。str.split(str="", num=string.count(str)).参数:str – 分隔符,默认为所有的空字符,包括空格、换行(\n)、制表符(\t)等。num – 分割次数。默认为 -1, 即分隔所有。返回值:Python split() 通过指定分隔符对字符串进行切片,如果参数 num 有指定值,则分隔 num+1 个子字符串返回分割后的字符串列表。A="www qqq eee qqq"B=A.

2020-10-27 15:11:26 327

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除