TF-IDF算法详解
一、TF-IDF算法概述
TF-IDF(Term Frequency-Inverse Document Frequency)算法是一种常用于信息检索和文本挖掘的加权技术。其基本思想是通过评估一个词在文档中的重要性,来确定这个词在文档集合或语料库中的权重。TF-IDF算法由两部分组成:词频(Term Frequency, TF)和逆文档频率(Inverse Document Frequency, IDF)。词频指的是一个词在文档中出现的次数与文档总词数的比例,而逆文档频率则是用来衡量一个词在整个文档集合中的重要程度。
二、TF-IDF算法原理
1.词频(TF)
词频(TF)指的是一个词在文档中出现的次数与文档总词数的比例。计算公式为:
[ \text{TF}(t, d) = \frac{n_{t,d}}{N_d} ]
其中,( t ) 是词,( d ) 是文档,( n_{t,d} ) 是词 ( t ) 在文档 ( d ) 中出现的次数,( N_d ) 是文档 ( d ) 的总词数。词频越高,说明该词在文档中的重要性越大。
2.逆文档频率(IDF)
逆文档频率(IDF)用于衡量一个词在整个文档集合中的重要程度。计算公式为:
[ \text{IDF}(t) = \log\frac{D}{d_t + 1} ]
其中,( D ) 是文档集合中的文档总数,( d_t ) 是包含词 ( t ) 的文档数。逆文档频率越高,说明该词在文档集合中的重要性越大。