【机器学习Q&A】文本表示模型:有哪些文本表示模型?它们各有什么优缺点?

本文探讨了文本表示模型,包括词袋模型、N-gram、主题模型和词嵌入。词袋模型忽略了词序,常用TF-IDF权重;N-gram考虑连续词组,有助于保留部分上下文;主题模型能揭示文本主题分布;词嵌入通过低维向量捕捉词义,深度学习模型如CNN和RNN进一步提取语义特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文本表示模型:有哪些文本表示模型?它们各有什么优缺点?

场景描述

文本是一类非常重要的非结构化数据,如何表示文本数据一直是机器学习领域的一个重要研究方向。
知识点词袋模型(Bag of Words)、TF-IDF(Term Frequency-Inverse Document Frequency),主题模型(Topic Model)、词嵌入模型(Word Embedding)
问题有哪些文本表示模型?它们各有什么优缺点?

分析与解答

  • 词袋模型和N-gram模型
    最基础的文本表示模型是词袋模型。顾名思义,就是将每篇文章看成一袋子词,并忽略每个词出现的顺序。具体地说,就是将整段文本以词为单位切分开,然后每篇文章可以表示成一个长向量,向量中的每一维代表一个单词,而该维对应的权重则反映了这个词在原文章中的重要程序。常用TF-IDF来计算权重,公式为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

镰刀韭菜

看在我不断努力的份上,支持我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值