PaGE-Link: Path-based Graph Neural Network Explanation for Heterogeneous Link Prediction
近日加州大学洛杉矶分校、亚马逊以及卡内基梅隆大学研究者们发表了一篇关于异质链路预测的文章:“PaGE-Link: Path-based Graph Neural Network Explanation for Heterogeneous Link Prediction”。研究人员 提出了一个基于路径的GNN解释器用于异质链路预测 (PaGE-Link), 生成具有连接可解释性的解释,享有模型可扩展性,并处理图的异质性。实验结果证明了其有效性。
PaGE-Link:基于路径的GNN解释器用于异质链路预测
论文地址:https://arxiv.org/abs/2302.12465
论文摘要:透明度
(transparency)和问责制
(accountability)已经成为黑盒机器学习 (ML)模型的主要关注点。对模型行为的适当解释可以增加模型的透明度,帮助研究人员开发更负责任的模型。图神经网络 (GNN)最近在许多图机器