【PaperReading】PaGE-Link: Path-based Graph Neural Network Explanation for Heterogeneous Link Predicti

PaGE-Link是一个基于路径的图神经网络解释器,专为异质链路预测设计。它通过k-core剪枝和异质路径增强掩码学习,生成连接节点对的重要路径解释,提供模型透明度,具有可扩展性和处理异质性。实验证明,PaGE-Link在解释性能和人类可理解性上优于现有方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


近日加州大学洛杉矶分校、亚马逊以及卡内基梅隆大学研究者们发表了一篇关于异质链路预测的文章:“PaGE-Link: Path-based Graph Neural Network Explanation for Heterogeneous Link Prediction”。研究人员 提出了一个基于路径的GNN解释器用于异质链路预测 (PaGE-Link), 生成具有连接可解释性的解释,享有模型可扩展性,并处理图的异质性。实验结果证明了其有效性。

PaGE-Link:基于路径的GNN解释器用于异质链路预测

PaGE-Link
论文地址:https://arxiv.org/abs/2302.12465

论文摘要:透明度 (transparency)和问责制 (accountability)已经成为黑盒机器学习 (ML)模型的主要关注点。对模型行为的适当解释可以增加模型的透明度,帮助研究人员开发更负责任的模型。图神经网络 (GNN)最近在许多图机器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

镰刀韭菜

看在我不断努力的份上,支持我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值