值得读的7本书人工智能安全相关书籍


本文为大家推荐一些非常有价值的大模型安全方面的书籍。其中包含了AI安全落地应用、安全构建和部署大语言模型、预防LLM技术中的安全风险等多方面的书籍。希望这些推荐能给对大模型安全感兴趣的你一些启发。

1. 黑客与画家

黑客与画家
本书是硅谷创业之父Paul Graham 的文集,主要介绍黑客即优秀程序员的爱好和动机,讨论黑客成长、黑客对世界的贡献以及编程语言和黑客工作方法等所有对计算机时代感兴趣的人的一些话题。书中的内容不但有助于了解计算机编程的本质、互联网行业的规则,还会帮助读者了解我们这个时代,迫使读者独立思考。

2. Building Secure AI Applications

Large Language Model Security
大型语言模型(LLMs)不仅在塑造人工智能的发展方向,也揭示了一个全新的安全挑战时代。这本实践指南直接深入探讨了这些威胁的核心问题。作者史蒂夫·威尔逊(Steve Wilson),Exabeam 的首席产品官,专注于 LLMs 本身,摒弃了泛化的 AI 安全讨论,深入探究这些模型所特有的属性及其潜在的漏洞。
本书凝聚了业界 400 多位专家共同制定 OWASP LLMs 顶级风险列表(OWASP Top 10 for LLMs)的集体智慧,为开发人员和安全团队提供了应对 LLM 应用现实挑战的实用指导与策略。无论你是正在设计全新的应用程序,还是为现有应用添加 AI 功能,这本书都是你掌握 AI 下一前沿领域安全格局的必备资源。

3. Superintelligence

SuperIntelligence
超级智能提出了一个问题:当机器在一般智力上超越人类时会发生什么?人造代理会拯救我们还是毁灭我们?尼克·博斯特罗姆为理解人类和智慧生命的未来奠定了基础。人脑具有其他动物大脑所缺乏的一些能力。正是这些独特的功能使我们的物种占据了主导地位。如果机器大脑在一般智力上超过了人类大脑,那么这种新的超智能可能会变得非常强大――可能超出我们的控制范围。正如大猩猩的命运现在更多地取决于人类而不是该物种本身一样,人类的命运也将取决于机器超智能的行为。

但是我们有一个优势:我们可以先发制人。是否有可能构建一个种子人工智能,设计初始条件以实现智能爆炸的生存性?如何才能实现可控引爆?

这本雄心勃勃、独辟蹊径的有声书打破了大量困难的知识领域。经过一次完全吸引人的旅程,带我们到思考人类状况和智慧生命未来的前沿,我们在尼克·波斯特罗姆的作品中找到了对我们这个时代基本任务的重新概念化。

4. LLM Security: A Comprehensive Guide to Securing Large Language Models and Applications

A Comprehensive Guide to Securing Large Language Models and Applications
大型语言模型(LLM)正在各个领域掀起革命,但其强大的功能伴随着安全风险。本书提供了一本关于保护 LLM 的全面指南,涵盖了从理解威胁到实施强大安全措施的所有内容。它深入探讨了现实世界中的案例研究、实用技术以及 LLM 安全的未来趋势。
主要特点:

  • 深入了解 LLM 安全性:探索 LLM 复杂的安全景观,包括数据隐私、模型中毒和对抗攻击。
  • 开发人员的实际指导:了解在 LLM 开发生命周期中确保可靠性的可行策略,从数据收集到部署。
  • 真实世界的案例研究:通过涉及 LLM 的实际安全事件获得见解,以了解潜在后果。
  • 为您的安全战略做好准备:走在新兴威胁的前面,并为 LLM 安全的未来做准备。

这本书适合哪些人?

  • 构建 LLM 应用程序的开发者
  • 保护 LLM 基础设施的安全专业人员
  • 对理解 LLM 安全影响感兴趣的任何人
  • 保护你的 LLM 投资:防止潜在的漏洞和数据泄漏。

打造安全可靠的 LLM 应用程序:实施最佳实践来确保 LLM 可靠性和完整性。
保持领先地位:通过了解最新的 LLM 安全趋势和技术获得竞争优势。
减轻风险并尽量减少潜在损害:学习如何有效地应对 LLM 安全事件。

5. Adversarial AI Attacks, Mitigations, and Defense Strategies

Adversarial AI Attacks, Mitigations, and Defense Strategies
对抗性攻击通过恶意数据欺骗AI系统,利用AI学习方式创造新的安全风险。这挑战了网络安全,因为它迫使我们防御一种全新的威胁类型。本书揭开了对抗性攻击的神秘面纱,并为您提供了保护AI技术的技能,超越研究炒作或常规业务活动。了解如何通过中毒、木马和模型提取等对抗性攻击来保护AI和LLM系统免受操纵和入侵,利用DevSecOps、MLOps和其他方法来保护系统。

这本书是一本基于策略的全面指南,结合结构化的框架与实际案例,帮助您识别并应对对抗性攻击。第1部分介绍了AI的基础知识以及对抗性攻击。第2、3和4部分涵盖了主要的攻击类型,展示了每种攻击是如何进行的,以及如何抵御它们。第5部分提出了设计安全的AI战略,包括威胁建模、MLSecOps以及符合OWASP和NIST的指导方针。最后,根据NIST支柱,本书为成熟的企业AI安全提供了一个蓝图,解决了在值得信赖的人工智能下的道德和安全性问题。

到此书结束时,你将能够有效地开发、部署和保护AI系统,以抵御对抗性攻击的威胁。

6. Securing LLM Models: Ensuring Security of Large Language Model Applications Against Threats and Attacks From Training to Deployment

Securing LLM Models
大型语言模型(LLM)正在改变各个行业,为内容创作、数据分析和智能自动化提供突破性的能力。然而,随着这种变革力量的出现,对强大的安全性的需求变得至关重要。您准备好利用LLM的潜力同时保护它们免受安全威胁吗?

本书深入探讨了LLM的安全性,为您提供应对挑战并释放这些强大工具巨大潜能的知识。您将探索整个LLM生命周期,从了解训练数据中的潜在漏洞到部署安全的LLM应用程序。

这本权威指南为您提供了以下知识:

  • 主动缓解安全风险:深入了解LLM中固有的潜在漏洞,例如偏见的训练数据或出于恶意目的操纵输出。制定有效的策略来对抗这些威胁,并确保您的LLM系统的安全性。
  • 实施一流的安全协议:发现业界领先的实践方法,用于保护LLM系统,保障其完整性,并保证其输出的可靠性。
  • 走在不断变化的威胁前面:这本书让您具备洞察力,以适应不断变化的LLM安全环境。获得有关新兴威胁和积极缓解策略的见解,以确保您的LLM保持安全。

本书是您关于LLM安全的一站式指南,融合了无与伦比的技术专长和可操作的战略。不要让安全问题阻碍您的LLM之旅。

7. Machine Learning and Security: Protecting systems with data and algorithms

Machine Learning and Security
机器学习技术能否解决我们的计算机安全问题,并最终结束攻击者和防御者之间的猫鼠游戏?或者这种希望只是炒作?现在你可以深入科学,自己回答这个问题。通过这本实用指南,你将探索如何将机器学习应用于入侵检测、恶意软件分类和网络分析等安全问题。

机器学习和安全专家Clarence Chio 和David Freeman提供了一个讨论这两个领域结合的框架,以及一系列可以应用到各种安全问题上的机器学习算法工具包。这本书非常适合安全工程师和数据科学家。

  • 了解机器学习是如何为现代垃圾邮件过滤器的成功做出贡献的。
  • 快速检测异常情况,包括漏洞、欺诈行为和即将发生的系统故障。
  • 通过对计算机二进制文件提取有用信息来进行恶意软件分析。
  • 在数据集中找到模式以发现网络中的攻击者。
  • 检查攻击者如何利用面向消费者的网站和应用程序功能。
  • 将你的机器学习算法从实验室转移到生产中。
  • 理解攻击者对机器学习解决方案构成的威胁
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

镰刀韭菜

看在我不断努力的份上,支持我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值