背景与需求:新能源发展的数据驱动基石
随着“双碳”目标的提出,我国新能源产业进入高速发展阶段。在此背景下,某新能源发电观测网络数据采集项目应运而生,以系统掌握风能、太阳能等新能源资源底数,夯实产业发展基础,为科学规划新能源项目布局提供坚实的数据支持。
这个项目的核心任务是通过科学布局观测站点,精准采集风能和太阳能资源数据,并利用先进的技术手段进行数据传输、存储和分析,从而实现对新能源资源的全方位掌握。
1. 项目需求
1.1 观测站点建设
- 科学布局风能和太阳能观测站点,包括70m、100m、180m等高度的测风塔及太阳能辐射观测站。
- 确保站点设备能够在高寒、高热、强风等复杂气候条件下长期稳定运行。
1.2 数据采集与传输
- 持续采集气象参数(如风速、风向、太阳辐射、直射比、温度、气压等),确保数据合格率≥95%。
- 实现低延时、高带宽的实时数据传输,满足远程监测需求。
1.3 数据分析与资源评估
- 提供资源普查报告、高精度风光资源分布图及长期资源变化趋势预测。
- 评估结果需符合国家技术规范,如《风电场风能资源测量方法》(GB/T18709-2002)与《光伏电站气象观测及资料审核、订正技术规范》(GB/T42477-2023)。
1.4 数据安全与产权保护
- 数据版权归属项目单位,需严格保障数据的安全性与保密性,防止未经授权的数据泄露。
网络架构设计:从站点到全局的三级协作
为了满足项目需求,网络架构采用三级设计:站点层-区域中心层-总控中心层,实现数据从采集到传输、存储、分析的全链路高效协同。
2.1 总体架构
(1)站点层
- 每个观测站点配备高性能工业级路由设备,支持2.4GHz与5GHz双频无线通信,满足偏远区域的网络覆盖需求。
- 站点设备支持多传感器数据的采集、初步处理和上传,确保数据传输的稳定性与实时性。
(2)区域中心层
- 区域中心通过无线或光纤网络聚合各站点数据,并对数据进行初步清洗和存储。
- 配置高性能服务器与网络存储设备(NAS),支持多点并发数据处理和冗余备份。
(3)总控中心层
- 总控中心部署分布式数据库与气象数据处理平台,支持大规模数据的存储、分析与可视化展示。
- 通过GIS平台展示高精度资源分布图,为新能源项目的科学规划提供决策支持。
2.2 数据流转设计
- 数据采集
- 站点传感器实时采集风速、风向、太阳辐射等参数,并通过工业级路由设备进行数据格式化处理。
- 数据传输
- 站点至区域中心通过无线通信(4G/5G)或光纤专线传输数据;区域中心至总控中心通过V*N专网进行加密传输。
- 数据存储
- 区域中心存储清洗后的数据并进行定期备份;总控中心对数据进行深度存储和分析。
- 数据分析与可视化
- 数据分析平台利用AI技术完成长期资源趋势预测,并通过GIS平台以地图形式直观展示资源分布。
技术选型与实现:从硬件到算法的全链路优化
3.1 数据采集与传输
硬件设备
- 传感器系统:
- 高精度风速仪、风向标、温湿度传感器、太阳辐射传感器等设备,支持多种气象参数的精准测量。
- 工业级路由设备:
- 支持双频WiFi(2.4GHz/5GHz),并发速率达1800Mbps,满足多设备高带宽数据传输需求。
- 配备多SIM卡槽与5G模块,支持全球主要5G频段,保障偏远站点的高可靠通信。
- 工业设计满足-20°C至70°C的工作环境,适应复杂气候条件。
组网技术
- 支持单点对单点、单点对多点、多点对多点的分布式组网模式,实现灵活部署。
- 网络延时低至<8ms,中心骨干网络延时<30ms,保障实时数据传输需求。
3.2 数据存储与管理
-
区域中心存储方案
- 配置网络存储设备(NAS),支持大容量、高并发的读写需求。
- 数据库采用国产化解决方案(如达梦数据库),符合国家信息安全标准。
-
总控中心存储方案
- 采用分布式存储架构(如Hadoop或Ceph),支持海量数据的并行存储与处理。
- 数据分层存储:原始数据、清洗数据与分析结果分开管理,方便调用与分析。
-
数据备份与恢复机制
- 每日增量备份、每周全量备份,结合异地备份机制,确保数据在极端情况下的安全性。
3.3 数据分析与可视化
-
AI与数值模拟技术
- 采用AI算法对观测数据进行订正与误差修正,构建高分辨率资源评估模型。
- 利用长期气象数据进行趋势预测,输出新能源开发潜力评估报告。
-
GIS可视化平台
- 通过地理信息系统(GIS)展示风光资源分布图,实现资源分布的精细化表达。
- 平台支持多终端访问(PC、移动端),便于用户实时查看与操作。
-
决策支持系统
- 集成网络性能监测与资源评估结果,为新能源站点选址、规划布局提供科学依据。
结语:为新能源发展提供坚实支撑
某新能源发电观测网络数据采集项目通过科学设计网络架构、选用高性能的硬件设备和先进的组网技术,构建了一个高效、安全、可扩展的观测网络。结合AI、GIS等技术手段,该项目能够精准掌握新能源资源分布,为推动清洁能源高质量发展和实现“双碳”战略目标提供全面支持。