在现代 AI 应用中,管理和存储大量的嵌入向量是一个常见的挑战。为了提高效率,很多开发者选择使用 Elasticsearch 这样的搜索引擎来存储和检索这些数据。今天,我们将深入介绍如何使用 ElasticsearchEmbeddingsCache
来实现这一功能。
技术背景介绍
ElasticsearchEmbeddingsCache
是一个基于 Elasticsearch 的字节存储实现,专为高效的嵌入向量存储和检索而设计。在构建使用自然语言处理和机器学习模型的应用时,这样的缓存方案可以显著提高数据的读取和处理速度。
核心原理解析
ElasticsearchEmbeddingsCache
利用 Elasticsearch 的分布式搜索引擎能力将嵌入向量存储为文档,这样在需要时可以快速检索或删除。通过在文档中添加嵌入向量作为属性,我们可以利用 Elasticsearch 的强大搜索功能来进行高效的向量检索。
代码实现演示
以下是如何使用 ElasticsearchEmbeddingsCache
在本地运行的 Elasticsearch 实例上进行嵌入向量存储和检索的完整代码示例。
首先,确保你已经安装了需要的包:
%pip install -qU langchain_elasticsearch
接下来,我们创建一个 ElasticsearchEmbeddingsCache
实例: