使用 Elasticsearch 作为 Embeddings 缓存的实现指南

在现代 AI 应用中,管理和存储大量的嵌入向量是一个常见的挑战。为了提高效率,很多开发者选择使用 Elasticsearch 这样的搜索引擎来存储和检索这些数据。今天,我们将深入介绍如何使用 ElasticsearchEmbeddingsCache 来实现这一功能。

技术背景介绍

ElasticsearchEmbeddingsCache 是一个基于 Elasticsearch 的字节存储实现,专为高效的嵌入向量存储和检索而设计。在构建使用自然语言处理和机器学习模型的应用时,这样的缓存方案可以显著提高数据的读取和处理速度。

核心原理解析

ElasticsearchEmbeddingsCache 利用 Elasticsearch 的分布式搜索引擎能力将嵌入向量存储为文档,这样在需要时可以快速检索或删除。通过在文档中添加嵌入向量作为属性,我们可以利用 Elasticsearch 的强大搜索功能来进行高效的向量检索。

代码实现演示

以下是如何使用 ElasticsearchEmbeddingsCache 在本地运行的 Elasticsearch 实例上进行嵌入向量存储和检索的完整代码示例。

首先,确保你已经安装了需要的包:

%pip install -qU langchain_elasticsearch

接下来,我们创建一个 ElasticsearchEmbeddingsCache 实例:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值