python-keras图像多标签分类模型训练

CSDN话题挑战赛第2期
参赛话题:学习笔记

最近在学习给图像打标签训练,记录一下自己整个过程。

在python中有数据包Tensorflow-keras可以进行模型训练

数据集可以是自己采集也可以下载网络上的数据集

  1.将image和其对应的labels进行处理 ,写入excel表

   2.获取所有图像进行读取,裁剪,转化为数组

# image_list 是图像列表
# data 是存放图像数组列表
# labels 是图像对应标签的列表
for imagePath in image_list:
	image = cv2.imread(imagePath)
	image = cv2.resize(image, (writh, height))
	image = img_to_array(image)
	data.append(image)
    label = image_dict[imagePath].split(',')
	labels.append(label)

   3.将data和labels列表转为数组

data = np.array(data, dtype="float") / 255.0
labels = np.array(labels)

   4.labels进行独热编码

mlb = MultiLabelBinarizer()
labels 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值