【OpenPCDet】Kitti数据集下训练PointPillars并评估&可视化

本文档详细介绍了如何在Ubuntu18.04上安装和运行OpenPCDet,这是一个用于激光雷达点云3D目标检测的开源框架。首先,创建并激活conda环境,安装所需依赖,包括torch和OpenPCDet。接着,下载并处理KITTI数据集,进行训练和测试。最后,通过open3d库实现可视化。在训练过程中,提供了单卡和多卡训练的命令,测试阶段则展示了如何使用预训练模型进行评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

ubuntu18.04 跑通OpenPCDet

OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection.

最近正在学习3D目标检测的算法,OpenPCDet是由香港中文大学MMLab实验室开源的轻量话激光雷达点云目标检测框架,它定义了一种统一的3D坐标系以及采用了数据与模型分离的高层代码设计思想,使用起来非常方便。
但是在早期的版本中由于spconv库很难安装(有关spconv库的安装可以看我的博客:OpenPCDet完整环境下Spconv1.x与Spconv2.x的安装问题及解决方法),之后我将使用OpenPCDet完成pointpillars算法的训练、评估、可视化等操作。


一、安装OpenPCDet

1.OpenPCDet安装要求

图源自https://github.com/open-mmlab/OpenPCDet/blob/master/docs/INSTALL.md,也就是OpenPCDet的安装手册
在这里插入图片描述

2.安装环境

创建虚拟环境

conda create -n OpenPCDet python==3.7

激活环境

conda activate OpenPCDet

先单独安装torch,torch安装连接为:

https://pytorch.org/get-started/previous-versions/

安装选用的命令行为:

pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html

torch安装完成后,cd 到clone好的OpenPCDet目录下:

pip install -r requirements.txt

3.Clone OpenPCDet项目

git clone https://github.com/open-mmlab/OpenPCDet.git

4.运行以下的命令安装pcdet库

python setup.py develop

二、运行OpenPCDet

1.数据集准备

下载官方的KITTI数据集,官方的KITTI数据集下载链接如下:KITT数据集官方下载链接。下载好zip文件之后,需要将数据集放在OpenPCDet/data/kitti文件夹下面,新建training、testing文件夹,将calib、velodyne、label_2、image_2文件夹解压,并把他们放到对应的training、testing文件夹中,testing文件夹没有label_2文件。之后我们可以看到文件夹的组织结构如下:

OpenPCDet
├── data
│   ├── kitti
│   │   │── ImageSets
│   │   │── training
│   │   │   ├──calib & velodyne & label_2 & image_2 & (optional: planes) & (optional: depth_2)
│   │   │── testing
│   │   │   ├──calib & velodyne & image_2
├── pcdet
├── tools

在完成数据集的准备之后我们再对数据集进行处理,从而生成kitti_gt_database中的的 .bin 格式的文件和.pkl 格式文件,处理的命令如下:

python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml

2.训练

关键参数的解析:
1.--cfg_file ${CONFIG_FILE}
指的是所使用的config文件,路径为:/openpcdet/tools/cfgs/kitti_models/pointpillar.yaml,此时表示对pointpillar进行训练。在这里插入图片描述
2. Batch_sizeepoch的修改
对刚刚的pointpillar.yaml进行修改,如下的BATCH_SIZE_PER_GPU代表每块GPU的 Batch_size数量,NUM_EPOCHS指的是训练的epoch总数量
在这里插入图片描述
3. output_dir的地址
在训练时找到train.py的改行代码,修改这些参数即可更改对应的地址。
对刚刚的进行修改,如下的代表每块GPU的 数量,指的是训练的epoch总数量

单卡训练

* Train with a single GPU:
shell script
python train.py --cfg_file ${CONFIG_FILE}
示例,进入到tools文件夹下:
python train.py --cfg_file cfgs/kitti_models/pointpillar.yaml

多卡训练

* Train with multiple GPUs or multiple machines
shell script
sh scripts/dist_train.sh ${NUM_GPUS} --cfg_file ${CONFIG_FILE}
示例,进入到tools文件夹下,${NUM_GPUS}代表的是GPU的数量,下方的“4”指的是用4卡运行GPU:
sh scripts/dist_train.sh 4 --cfg_file cfgs/kitti_models/pointpillar.yaml

3.测试

Test and evaluate the pretrained models

  • Test with a pretrained model:
```shell script
python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --ckpt ${CKPT}
  • To test all the saved checkpoints of a specific training setting and draw the performance curve on the Tensorboard, add the --eval_all argument:
python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --eval_all
  • To test with multiple GPUs:
sh scripts/dist_test.sh ${NUM_GPUS} \
    --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE}

三、OpenPCDet的可视化

1.安装open3d

首先需要安装可视化的库,mayavi或者open3d两者都可以,但是安装mayavi的时候问题比较多,建议安装open3d。

pip install open3d==0.11

注意:这里建议安装open3d0.11版本,否则后续可视化是会报错:

'NoneType' object has no attribute 'point_size' 

2.测试open3d是否安装成功

python
import open3d

结果如下表示成功安装:
在这里插入图片描述

3.可视化测试

可视化代码:

python demo.py --cfg_file cfgs/kitti_models/pv_rcnn.yaml \
    --ckpt pv_rcnn_8369.pth \
    --data_path ${POINT_CLOUD_DATA}

例子:

python demo.py --cfg_file /home/hzc/PythonProject/LiDAR-Distillation/tools/cfgs/kitti_models/pointpillar_car.yaml --ckpt /home/hzc/PythonProject/LiDAR-Distillation/output/pointpillar_car/default/ckpt/checkpoint_epoch_79.pth --data_path /data1_4t/dataset/KITTI/testing/velodyne/000211.bin

运行时发生报错:

I got a Error = [ GLFW Error: X11: The DISPLAY environment variable is missing ]

解决方法:
https://blog.csdn.net/WUDIxi/article/details/123577374
远程调试 qt.qpa.xcb: could not connect to display, echo DISPLAY为空[已解决]

上面的两个网页可以参考一下,遇到的是相同的问题,在这里我们需要借助远程ssh连接工具,比如使用mobaxterm,在mobaxterm的命令行输入

echo $DISPLAY

得到的输出为:

localhost:11.0

再打开vscode的终端设置DISPLAY的值为11.0,命令如下:

export DISPLAY=11.0

运行结果:在这里插入图片描述在vscode下重新输入可视化的命令,得到的可视化结果如下:
在这里插入图片描述

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值