深度学习基本术语

1、关于一个事件或对象的描述,称为一个“示例”(instance)或“样本”(sample),“示例”或“样本”的集合称为一个“数据集”(data set)

      例如,(色泽=青绿;根蒂=蜷缩;敲声=浊响),(色泽=乌黑;根蒂=稍蜷;敲声=沉闷),(色泽=浅白;根蒂=硬挺;敲声=清脆),……每对括号内是一条记录,这组记录的集合就是一个“数据集”。

2、反映事件或对象在某方面的表现或性质的事项,称为“属性”(attribute)“特征”(feature),例如“色泽”“根蒂”“敲声”

      属性上的值,称为“属性值”(attribute value),例如“青绿”“乌黑”,属性张成的空间称为“属性空间”(attribute space)、“样本空间”(sample space)或“输入空间”。例如,如果把“色泽”、“根蒂”、“敲声”作为三个坐标轴,则它们张成一个用于描述西瓜的三维空间,每个西瓜都可在这个空间中找到自己的坐标位置,由于空间中的每个点对应一个坐标向量,因此也把一个示例称为一个“特征向量”。

3、从数据中学得模型的过程称为“学习”(learning)或“训练”(training),这个过程通过执行某个学习算法来完成。训练过程中使用的数据称为“训练数据”(training data),其中每个样本称为一个“训练样本”(training sample),训练样本组成的集合称为“训练集”(training set)。学得模型对应了关于数据的某种潜在的规律,因此亦称“假设”(hypothesis)。这种潜在规律自身,则称为“真相”或“真实”(ground-truth),学习过程就是为了找出或逼近真相。模型有时也称为“学习器”(learner)

4、关于示例结果的信息,称为“标记”(label)。例如((色泽= 青绿;根蒂=蜷缩;敲声=浊响),好瓜),“好瓜”就是“标记”。

拥有了标记信息的示例,则称为“样例”(example)。若将标记看做对象本身的一部分,则“样例”有时也称为“样本”。所有标记的集合,称为“标记空间”(label space)或“输出空间”

5、预测的如果是离散值,例如“好瓜”、“坏瓜”,此类学习认为称为“分类”(classification),如果预测的是连续值,例如西瓜的成熟度0.95、0.37,此类学习认为称为“回归”(regression)。对只涉及两个类别的“二分类”任务,通常称其中一个类为“正类”(positive class),另一个为“反类”(negative class)。涉及多个类别时,则称为“多分类”(multi-class classification)任务

6、学得模型后,使用其进行预测的过程称为“测试”(testing),被预测的样本称为“测试样本”(testing sample)

7、根据训练数据是否拥有标记信息,学习任务可大致分为两大类:“监督学习”(supervised learning)“无监督学习”(unsupervised learning)。分类或回归是前者的代表,而聚类是后者的代表。

8、学得模型适用于新样本的能力,称为“泛化”(generalization)能力

9、通常假设样本空间中全体样本服从一个未知“分布”(distribution)D,我们获得的每个样本都是独立地从这个分布上采样获得的,即“独立同分布”(independent and identically distributed)

 

### 深度学习领域常见术语解释 #### Backbone 在网络架构设计中,“Backbone”特指卷积神经网络或其他类型神经网络的核心部分,主要职责是从输入数据中抽取特征并将其传递至下一层以完成特定任务,比如分类、目标检测或是语义分割等[^2]。 #### Head 与“Backbone”相对应的是“Head”,这部分位于整个模型结构的末端,专门负责基于由backbone提取出来的高级特征来进行具体的预测工作。例如,在物体检测任务里,heads可能包含边界框回归器以及类别识别模块。 #### Neck 介于backbone和head之间的组件被称为neck,其作用在于进一步加工来自backbone的信息流,以便更好地服务于最终的任务需求。常见的neck实现形式有FPN(Feature Pyramid Networks)、PANet等,它们能增强多尺度特征表示的能力。 #### Ground Truth 在机器学习尤其是监督学习场景下,“Ground Truth”代表了样本的真实标签或理想输出值;它是评估算法性能好坏的重要依据之一。对于图像标注而言,ground truth即是由人工精心标记好的像素级精确位置信息或者对象类别标识[^3]。 #### Pretext Task & Downstream Task Pretext tasks是指那些本身并非我们真正关心的应用问题但却有助于预训练模型获取通用视觉表征的学习子任务;而downstream tasks则是指实际想要解决的具体业务挑战所在的任务。通过先做pretext task再迁移至downstream task的方式可以有效提升下游任务的表现效果。 #### State, Action, Reward (SAR) 这三个概念来源于强化学习框架内,其中state表示环境状态,action意味着智能体采取的动作,reward则反映了因执行某动作后所获得即时反馈奖励得分的变化情况。三者共同构成了agent与environment交互过程的一个基本单元——时间步(timestep)[^4]。 #### Trajectory 一条轨迹(trajectory)记录了一次完整的episode期间所有连续发生的(state, action, reward)序列集合。它完整描绘出了从初始时刻直到终止条件满足为止这一过程中agent经历过的全部事件发展脉络。 #### Spatial Pyramid Pooling (SPP) 为了使CNN具备接受任意分辨率图片作为输入而不影响参数量固定不变的优势特性,提出了空间金字塔池化机制。该方法通过对原始feature map实施多层次划分采样操作进而得到定长向量表达,实现了对不同尺寸源图的有效兼容处理[^5]。 ```python import torch.nn as nn class SPP(nn.Module): def __init__(self, levels=[1, 2, 4]): super(SPP, self).__init__() self.levels = levels def forward(self, x): b, c, h, w = x.size() features = [] for level in self.levels: size_h = int(h / level) size_w = int(w / level) pool = F.adaptive_max_pool2d(x, output_size=(size_h, size_w)) flattened = pool.view(b, -1) features.append(flattened) concatenated = torch.cat(features, dim=1) return concatenated ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值