online training 和offline training 在深度学习中什么意思?

总结: online training(在线学习)只拿部分数据训练、offline training(离线学习)拿全部数据进行训练。在线学习:一个样本训练完,直接更新权重。离线学习:一个样本进入,跑完整个样本才更新权重。

1、offline training

离线学习,通常是用来训练大的或者复杂的模型,因为训练的过程往往比较耗时,处理数据量大,无法在线完成。离线学习(offline training)中,所有的训练数据在模型训练期间必须是可用的。只有训练完成了之后,模型才能被拿来用。简而言之,先训练,再用模型,不训练完就不用模型。
(类似于批量学习,假设整个样本有m个数据,离线训练会训练m的整数倍次数,然后带入下一条,直至跑完整个样本,这个时候误差率可能不让你满意,把整个样本又做个上述操作,直至误差很小。离线学习是一个batch训练完才更新权重,因此要求所有数据必须在每一个训练训练操作中(batch)中都是可用的,这样不会因为个别数据的更新错误把网络带向极端。)

2、online training

在线学习(online learning)中, 数据可能是以流式的形式, 比如监控视频, 一直在拍, 我们根据目前看到的这部分的数据进行训练, 几秒后的数据不能用来训练. 在线算法按照顺序处理数据。它们产生一个模型,并在把这个模型放入实际操作中,而不需要在一开始就提供完整的的训练数据集。随着更多的实时数据到达,模型会在操作中不断地更新。
(通常是一次输入一条数据(而不是一个batch),训练完了直接更新权重。一个一个地按照顺序处理数据,但是每一个数据训练完后都会直接更新权重,但不知道是对是错,如果某一次权重更新错误,在这之后的权重更新可能一直都是错的,最后得到的模型可能就会逐渐走向错误方向,残差出现。在线学习先按顺序处理数据,他们产生一个模型,并把这个模型放在实际操作中,不需要一开始就提供完整的训练数据集。随着更多实时数据进入模型,模型会在操作中不断被更新)

3、举个例子

在玩俄罗斯方块的时候, 你只能看到当前的方块是什么(有可能还能看到下一个方块是什么), 你需要根据当前的方块进行决策, 这种基于当前信息的决策过程就是在线算法(online algorithm). 而当你能知道整个方块序列是什么的时候, 你可能会有不一样的决策, 比如"这个方块可以放在左边这个地方, 这样和10步以后的那个方块就能凑在一起消掉", 这种基于全局信息的决策过程就是离线算法(offline algorithm)。

4、使用

在线学习和离线学习经常是结合使用,比如离线训练一个复杂的模型,在线进行微调;还有就是离线训练好模型,在线利用训练好的模型做预测或者判别。

深度强化学习(DeepRL)在自动化PID参数调整中的应用,尤其是使用DDPG算法,可以有效地简化传统手动调整的复杂性,同时提高控制系统的性能。DDPG是一种无模型的深度强化学习算法,特别适合于具有连续动作空间的控制问题。在实际应用DDPG调整PID参数的过程中,需要注意以下几个核心步骤: 参考资源链接:[利用DDPG深度强化学习调整PID控制器参数](https://wenku.csdn.net/doc/9gkh5awr03?spm=1055.2569.3001.10343) 1. **状态表示(State Representation)**:智能体需要从控制系统中提取关键状态信息,以指导学习过程。这些状态可以包括当前的误差、误差的变化率、系统内其他相关状态变量等。状态的准确表示对于智能体学习有效的控制策略至关重要。 2. **动作空间(Action Space)**:智能体的动作空间定义了可以改变的PID参数,通常包括比例、积分微分三个参数的调整范围。动作空间的设计需要反映实际问题的需求,并确保算法探索动作空间时的安全性有效性。 3. **奖励函数设计(Reward Function Design)**:奖励函数是强化学习中的关键,它必须能够反映出控制性能的好坏。一个常见的做法是根据控制误差的积分来设计奖励函数,以此来激励智能体减少误差。 4. **训练过程(Training Process)**:智能体通过与环境交互,执行动作,收集状态奖励信息,然后更新策略网络Q网络。策略网络负责决定在给定状态下应该采取的动作,而Q网络用于评估动作的价值。 在实施DDPG算法进行PID参数调节的过程中,挑战主要集中在如何确保学习过程的稳定性收敛性。为此,可以采取以下措施: - **探索策略(Exploration Strategy)**:由于直接在实际系统中应用DDPG可能存在风险,因此合理的设计探索策略,如使用噪声、熵正则化或早期停止等,可以保证智能体在探索中保持稳定。 - **性能监控(Performance Monitoring)**:在训练过程中实时监控PID控制系统的性能,确保在达到预期性能前智能体不会采取过度的探索行为,防止系统性能下降。 - **离线训练与在线微调(Offline Training and Online Fine-tuning)**:先在仿真环境中进行离线训练,再在实际系统中进行微调,这可以减少对实际系统的风险,并加速学习过程。 推荐的资源《利用DDPG深度强化学习调整PID控制器参数》详细介绍了如何结合DDPG算法与PID控制,提供了理论实践相结合的全面知识,对于理解实现DDPG在PID参数调节中的应用具有极大的帮助。此外,为了进一步深入学习研究,可以考虑查看更多关于深度强化学习控制系统设计的高级资料,以及探索如何将这些技术应用于更广泛的自动化智能控制领域。 参考资源链接:[利用DDPG深度强化学习调整PID控制器参数](https://wenku.csdn.net/doc/9gkh5awr03?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值